

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to the full temperature of 0 to $55^{\circ} \mathrm{C}{ }^{1}$, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2σ) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 ${ }^{\circ} \mathrm{C}$. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to $30^{\circ} \mathrm{C}$. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

The analyzer will meet its specifications when:

- It is within its calibration cycle
- Under auto couple control, except when Auto Sweep Time Rules = Accy
- Signal frequencies $<10 \mathrm{MHz}$, with DC coupling applied
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on, if it had previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range
- The analyzer has been turned on at least 30 minutes with Auto Align set to normal, or, if Auto Align is set to off or partial, alignments must have been run recently enough to prevent an Alert message; if the Alert condition is changed from Time and Temperature to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user

1. For earlier instruments (Serial number prefix $<M Y / S G / U S 5052$), the full temperature ranges from 5 to $50^{\circ} \mathrm{C}$.

This EXA signal analyzer data sheet is a summary of the complete specifications and conditions for N9010A EXA signal analyzers (including N9010AEP Express EXA signal analyzers), which are available in the EXA Signal Analyzer Specification Guide. The EXA Signal Analyzer Specification Guide can be obtained on the web at:
www.agilent.com/find/exa_manuals
For ordering information, refer to the EXA Signal Analyzer Configuration Guide (5989-6531EN).

Balance the challenges

Whether you're focused on time-to-market, time-to-volume, or cost of test, your choice of economyclass signal analyzer should help you save both time and money. That's the idea that drives the Agilent EXA signal analyzer-and it's the fastest way to maximize throughput on the production line. From measurement speed to code compatibility, it makes every millisecond count and helps reduce your overall cost of test.

Frequency and Time Specifications

Frequency range	DC coupled	AC coupled
Option 503	10 Hz to 3.6 GHz	10 MHz to 3.6 GHz
Option 507	10 Hz to 7 GHz	10 MHz to 7 GHz
Option 513	10 Hz to 13.6 GHz	10 MHz to 13.6 GHz
Option 526	10 Hz to 26.5 GHz	10 MHz to 26.5 GHz
Option 532	10 Hz to 32 GHz	NA
Option 544	10 Hz to 44 GHz	NA
Band LO multiple (N		
0 1	10 Hz to 3.6 GHz	
1×1	3.5 to 7.0 GHz	
1 1	3.5 to 8.4 GHz	
2	8.4 to 13.6 GHz	
$3 \sim 2$	13.5 to 17.1 GHz	
4	17 to 26.5 GHz	
5 4	26.4 to 34.5 GHz	
6 8	34.4 to 44 GHz	
Frequency reference		
Accuracy	$\pm[$ (time since last adjustment x aging rate) + temperature stability + calibration accuracy]	
Aging rate	$\begin{aligned} & \text { Option PFR } \\ & \pm 1 \times 10^{-7} / \text { year } \\ & \pm 1.5 \times 10^{-7} / 2 \text { years } \end{aligned}$	Standard $\pm 1 \times 10^{-6} /$ year
```Temperature stability 20 to \(30^{\circ} \mathrm{C}\) Full temperature range```	$\begin{aligned} & \text { Option PFR } \\ & \pm 1.5 \times 10^{-8} \\ & \pm 5 \times 10^{-8} \\ & \hline \end{aligned}$	Standard $\begin{aligned} & \pm 2 \times 10^{-6} \\ & \pm 2 \times 10^{-6} \\ & \hline \end{aligned}$
Achievable initial calibration accuracy	$\begin{aligned} & \text { Option PFR } \\ & \pm 4 \times 10^{-8} \end{aligned}$	Standard $\pm 1.4 \times 10^{-6}$
Example frequency reference accuracy (with Option PFR)   1 year after last adjustment	$\begin{aligned} & = \pm\left(1 \times 1 \times 10^{-7}+5 \times\right. \\ & = \pm 1.9 \times 10^{-7} \end{aligned}$	
Residual FM Option PFR Standard	$\begin{aligned} & \leq(0.25 \mathrm{~Hz} \times \mathrm{N}) \mathrm{p}-\mathrm{p} \text { in } \\ & \leq(10 \mathrm{~Hz} \times \mathrm{N}) \mathrm{p}-\mathrm{p} \text { in } 2 \\ & \text { See band table above } \end{aligned}$	
Frequency readout accuracy (start, stop, center, marker)		
	$\begin{aligned} & \pm \text { (marker frequency } x \text { frequency reference accuracy }+0.25 \% \times \text { span }+5 \% \times \text { RBW } \\ & \left.+2 \mathrm{~Hz}+0.5 \times \text { horizontal resolution }{ }^{1}\right) \end{aligned}$	
Marker frequency counter		
Accuracy	$\pm$ (marker frequency x frequency reference accuracy +0.100 Hz )	
Delta counter accuracy	$\pm$ (delta frequency x frequency reference accuracy +0.141 Hz )	
Counter resolution	0.001 Hz	
Frequency span (FFT and swept mode)		
Range	0 Hz (zero span), 10 Hz to maximum frequency of instrument	
Resolution	2 Hz	
Accuracy Swept FFT		

1. Horizontal resolution is span/(sweep points - 1).

Sweep time and triggering		
Range	$\begin{aligned} & \text { Span }=0 \mathrm{~Hz} \\ & \text { Span } \geq 10 \mathrm{~Hz} \end{aligned}$	$1 \mu \mathrm{~s}$ to 6000 s   1 ms to 4000 s
Accuracy	$\begin{aligned} & \text { Span } \geq 10 \mathrm{~Hz} \text {, swept } \\ & \text { Span } \geq 10 \mathrm{~Hz} \text {, FFT } \\ & \text { Span }=0 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \pm 0.01 \% \text { nominal } \\ & \pm 40 \% \text { nominal } \\ & \pm 0.01 \% \text { nominal } \end{aligned}$
Trigger	Free run, line, video, external 1, external 2, RF burst, periodic timer	
Trigger Delay	$\begin{aligned} & \text { Span }=0 \mathrm{~Hz} \text { or } \mathrm{FFT} \\ & \text { Span } \geq 10 \mathrm{~Hz} \text {, swept } \\ & \text { Resolution } \end{aligned}$	-150 to +500 ms 0 to 500 ms $0.1 \mu \mathrm{~s}$
Time gating		
Gate methods   Gate length range (except method $=\mathrm{FFT}$ )   Gate delay range   Gate delay jitter	Gated LO; gated video; gated FFT 100.0 ns to 5.0 s   0 to 100.0 s   33.3 ns p -p nominal	
Sweep (trace) point range		
All spans	1 to 40001	
Resolution bandwidth (RBW)		
Range ( -3.01 dB bandwidth)	1 Hz to 3 MHz ( $10 \%$ steps), 4, 5, 6, 8 MHz	
Bandwidth accuracy (power)	1 Hz to 750 kHz $\pm 1.0 \%( \pm 0.044 \mathrm{~dB})$   820 kHz to $1.2 \mathrm{MHz}(<3.6 \mathrm{GHz} \mathrm{CF})$ $\pm 2.0 \%( \pm 0.088 \mathrm{~dB})$   1.3 to $2 \mathrm{MHz}(<3.6 \mathrm{GHz})$ $\pm 0.07 \mathrm{~dB}$ nominal   2.2 to $3 \mathrm{MHz}(<3.6 \mathrm{GHz} \mathrm{CF})$ $\pm 0.15 \mathrm{~dB}$ nominal   4 to $8 \mathrm{MHz}(<3.6 \mathrm{GHz} \mathrm{CF})$ $\pm 0.25 \mathrm{~dB}$ nominal	
Bandwidth accuracy ( -3.01 dB ) RBW range	1 Hz to 1.3 MHz	$\pm 2 \%$ nominal
Selectivity ( $-60 \mathrm{~dB} /-3 \mathrm{~dB}$ )	4.1:1 nominal	
EMI bandwidth (CISPR compliant)	$200 \mathrm{~Hz}, 9 \mathrm{kHz}, 120 \mathrm{kHz}, 1 \mathrm{MHz}$	(Option EMC or N6141A ${ }^{1}$ required)
EMI bandwidth (MIL STD 461E compliant)	$10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$, $100 \mathrm{kHz}, 1 \mathrm{MHz}$	(Option EMC or N6141A ${ }^{1}$ required)
Analysis bandwidth ${ }^{2}$		
Maximum bandwidth	Option B40 ${ }^{1}$   Option B25 (standard)   Standard	40 MHz 25 MHz   10 MHz
Video bandwidth (VBW)		
Range	1 Hz to 3 MHz ( $10 \%$ steps), 4, 5, 6, 8 MHz, and wide open (labeled 50 MHz )	
Accuracy	$\pm 6 \%$ nominal	
Measurement speed ${ }^{3}$	Standard nominal	Option PC4 nominal
Local measurement and display update rate	$11 \mathrm{~ms}(90 / \mathrm{s}$ )	$4 \mathrm{~ms}(250 / \mathrm{s})$
Remote measurement and LAN transfer rate	$6 \mathrm{~ms}(167 / \mathrm{s})$	$5 \mathrm{~ms}(200 / \mathrm{s})$
Marker peak search	5 ms	1.5 ms
Center frequency tune and transfer (RF)	22 ms	20 ms
Center frequency tune and transfer ( $\mu \mathrm{W}$ )	49 ms	47 ms
Measurement/mode switching	75 ms	39 ms
1. Not available on millimeter-wave EXA (Option 532 or 544)		
2. Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.		
3. Sweep points $=101$.		

## Amplitude Accuracy and Range Specifications

Amplitude range	
Measurement range	Displayed average noise level (DANL) to +23 dBm
Input attenuator range ( 10 Hz to 26.5 GHz )   Standard   Option FSA	0 to 60 dB in 10 dB steps 0 to 60 dB in 2 dB steps
Electronic attenuator (Option EA3)	
Frequency range	10 Hz to 3.6 GHz
Attenuation range Electronic attenuator range Full attenuation range (mechanical + electronic)	0 to $24 \mathrm{~dB}, 1 \mathrm{~dB}$ steps 0 to $84 \mathrm{~dB}, 1 \mathrm{~dB}$ steps
Maximum safe input level	
Average total power (with and without preamp)	$+30 \mathrm{dBm}(1 \mathrm{~W})$
Peak pulse power	$<10 \mu$ s pulse width, $<1 \%$ duty cycle $+50 \mathrm{dBm}(100 \mathrm{~W}$ ) and input attenuation $\geq 30 \mathrm{~dB}$
DC volts DC coupled AC coupled	$\begin{aligned} & \pm 0.2 \mathrm{Vdc} \\ & \pm 100 \mathrm{Vdc} \end{aligned}$
Display range	
Log scale	0.1 to $1 \mathrm{~dB} /$ division in 0.1 dB steps   1 to $20 \mathrm{~dB} /$ division in 1 dB steps ( 10 display divisions)
Linear scale	10 divisions
Scale units	$\mathrm{dBm}, \mathrm{dBmV}, \mathrm{dB} \mu \mathrm{V}, \mathrm{dBmA}, \mathrm{dB} \mu \mathrm{A}, \mathrm{V}, \mathrm{W}, \mathrm{A}$


Frequency response		Specification	95th percentile ( $\approx 2 \sigma$ )
( 10 dB input attenuation, 20 to $30^{\circ} \mathrm{C}$, preselector centering applied, $\sigma=$ nominal standard deviation)			
RF/MW (Option 503, 507, 513, 526)	9 kHz to 10 MHz   $10 \mathrm{MHz}{ }^{1}$ to 3.6 GHz   3.5 to 7.0 GHz   6.9 to 13.6 GHz   13.5 to 22.0 GHz   22.0 to 26.5 GHz	$\begin{aligned} & \pm 0.8 \mathrm{~dB} \\ & \pm 0.6 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 3.0 \mathrm{~dB} \\ & \pm 3.2 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.4 \mathrm{~dB} \\ & \pm 0.21 \mathrm{~dB} \\ & \pm 0.69 \mathrm{~dB} \end{aligned}$
Millimeter-wave (Option 532, 544)	9 kHz to 10 MHz 10 to 50 MHz 50 MHz to 3.6 GHz 3.5 to 5.2 GHz 5.2 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22.0 GHz 22.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 44 GHz	$\begin{aligned} & \pm 0.6 \mathrm{~dB} \\ & \pm 0.45 \mathrm{~dB} \\ & \pm 0.45 \mathrm{~dB} \\ & \pm 1.7 \mathrm{~dB} \\ & \pm 1.5 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 3.2 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.28 \mathrm{~dB} \\ & \pm 0.21 \mathrm{~dB} \\ & \pm 0.20 \mathrm{~dB} \\ & \pm 0.91 \mathrm{~dB} \\ & \pm 0.61 \mathrm{~dB} \\ & \pm 0.61 \mathrm{~dB} \\ & \pm 0.67 \mathrm{~dB} \\ & \pm 0.78 \mathrm{~dB} \\ & \pm 0.72 \mathrm{~dB} \\ & \pm 1.11 \mathrm{~dB} \\ & \pm 1.42 \mathrm{~dB} \end{aligned}$
Preamp on (P03, P07)			
RF/MW   (Option 503, 507, 513, 526)	100 kHz to 3.6 GHz   3.6 to 7.0 GHz		$\pm 0.28 \mathrm{~dB}$ nominal   $\pm 0.67 \mathrm{~dB}$ nominal
Preamp on (P03, P07, P32, P44)			
Millimeter-wave (Option 532, 544)	100 kHz to 3.6 GHz 3.5 to 8.4 GHz 8.4 to 26.5 GHz 26.4 to 44 GHz		$\pm 0.28 \mathrm{~dB}$ nominal   $\pm 0.67 \mathrm{~dB}$ nominal   $\pm 0.50 \mathrm{~dB}$ nominal   $\pm 0.80 \mathrm{~dB}$ nominal

1. DC coupling required to meet specifications below 50 MHz . With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical observations at 10 MHz with AC coupling show that most instruments meet the DC-coupled specifications, however, a small percentage of instruments are expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible but not warranted.

Input attenuation switching uncertainty		Specifications	Additional information
Attenuation $>2 \mathrm{~dB}$, preamp off Relative to 10 dB (reference setting)	$\begin{aligned} & 50 \mathrm{MHz} \text { (reference frequency) } \\ & 9 \mathrm{kHz} \text { to } 3.6 \mathrm{GHz} \\ & 3.5 \text { to } 7.0 \mathrm{GHz} \\ & 6.9 \text { to } 13.6 \mathrm{GHz} \\ & 13.5 \text { to } 26.5 \mathrm{GHz} \\ & >26.5 \mathrm{GHz} \end{aligned}$	$\pm 0.20 \mathrm{~dB}$	$\begin{aligned} & \pm 0.08 \mathrm{~dB} \text { typical } \\ & \pm 0.3 \mathrm{~dB} \text { nominal } \\ & \pm 0.5 \mathrm{~dB} \text { nominal } \\ & \pm 0.7 \mathrm{~dB} \text { nominal } \\ & \pm 0.7 \mathrm{~dB} \text { nominal } \\ & \pm 1.0 \mathrm{~dB} \text { nominal } \end{aligned}$
Total absolute amplitude accuracy			
( 10 dB attenuation, 20 to $30^{\circ} \mathrm{C}, 1 \mathrm{~Hz} \leq \mathrm{RBW} \leq 1 \mathrm{MHz}$, input signal -10 to -50 dBm , all settings auto-coupled except Auto Swp Time $=$ Accy, any reference level, any scale, $\sigma=$ nominal standard deviation)			
	At 50 MHz   At all frequencies 9 kHz to 3.6 GHz	$\begin{aligned} & \pm 0.40 \mathrm{~dB} \\ & \pm(0.40 \mathrm{~dB}+\text { frequency response }) \\ & \pm 0.27 \mathrm{~dB} \text { (95th Percentile } \approx 2 \sigma) \end{aligned}$	
Preamp on	100 kHz to 3.6 GHz	$\pm$ (0.39 dB + frequency response)	
Input voltage standing wave ratio (VSWR) ( $\geq 10 \mathrm{~dB}$ input attenuation)			
		$\begin{aligned} & \text { Options } 503, \\ & 507,513,526 \end{aligned}$	Options 532, 544
	10 MHz to 3.6 GHz 3.6 to 26.5 GHz 26.5 to 44 GHz	$\begin{aligned} & <1.2: 1 \text { nominal } \\ & <1.8: 1 \text { nominal } \\ & \text { N/A } \end{aligned}$	1.2:1 nominal 1.5:1 nominal < 1.8:1 nominal
Resolution bandwidth switching uncertainty (referenced to 30 kHz RBW)			
1 Hz to 3 MHz RBW	$\pm 0.10 \mathrm{~dB}$		
4, 5, 6, 8 MHz RBW	$\pm 1.0 \mathrm{~dB}$		
Reference level			
Range Log scale Linear scale	-170 to +23 dBm in 0.01 dB steps   Same as $\log$ ( 707 pV to 3.16 V )		
Accuracy	0 dB		
Display scale switching uncertainty			
Switching between linear and log	0 dB		
Log scale/div switching	0 dB		
Display scale fidelity			
Between -10 dBm and -80 dBm input mixer level	$\pm 0.15 \mathrm{~dB}$ total		
Trace detectors			
Normal, peak, sample, negative peak, log power average, RMS average, and voltage average			
Preamplifier (Option P03, P07, P32, P44)			
Frequency range	Option P03   Option P07   Option P32   Option P44	100 kHz to 3.6 GHz 100 kHz to 7 GHz 100 kHz to 32 GHz 100 kHz to 44 GHz	
Gain	100 kHz to 3.6 GHz 3.6 to 7.0 GHz $>7 \mathrm{GHz}$	+20 dB nominal   +35 dB nominal   +40 dB nominal	
Noise figure	100 kHz to 3.6 GHz   3.6 to 8.4 GHz   8.4 to 13.6 GHz   $>13.6 \mathrm{GHz}$	8 to 12 dB nominal (proportional to frequency)   9 dB nominal   10 dB nominal   DANL +176.24 dB nominal	

## Dynamic Range Specifications

1 dB gain compression (two-tone)			
	Total power at mixer input		
RF/MW   (Option 503, 507, 513, 526)	20 MHz to 26.5 GHz	+9 dBm nominal	
		Total power at preamp input	
Preamp on RF/MW (Option 503, 507, 513, 526)	10 MHz to 3.6 GHz 3.6 to 7.0 GHz	$\begin{aligned} & -10 \mathrm{dBm} \text { no } \\ & -26 \mathrm{dBm} \text { no } \end{aligned}$	
		Total powe	input
Millimeter-wave (Option 532, 544)	20 MHz to 26.5 GHz 26.5 to 44 GHz	+6 dBm nominal   0 dBm nominal	
		Total power at preamp input	
Preamp on   Millimeter-wave   (Option 532, 544)	$\begin{aligned} & 10 \mathrm{MHz} \text { to } 3.6 \mathrm{GHz} \\ & 3.6 \text { to } 26.5 \mathrm{GHz} \\ & \text { Tone spacing: } 100 \mathrm{kHz} \text { to } 20 \mathrm{MHz} \\ & \text { Tone spacing: }>70 \mathrm{MHz} \\ & >26.5 \mathrm{GHz} \end{aligned}$	-28 dBm nominal   -20 dBm nominal   -30 dBm nominal	
Displayed average noise level (DANL)   (Input terminated, sample or average detector, averaging type $=$ Log, 0 dB input attenuation, IF Gain $=\mathrm{High}, 20$ to $30^{\circ} \mathrm{C}$ )			
		Specification	Typical
RF/MW   (Option 503, 507, 513, 526)	1 to 10 MHz 10 MHz to 2.1 GHz 2.1 to 3.6 GHz 3.6 to 7.0 GHz 7.0 to 13.6 GHz 13.6 to 17.1 GHz 17.1 to 22 GHz 22 to 26.5 GHz	$\begin{aligned} & -147 \mathrm{dBm} \\ & -148 \mathrm{dBm} \\ & -147 \mathrm{dBm} \\ & -147 \mathrm{dBm} \\ & -143 \mathrm{dBm} \\ & -137 \mathrm{dBm} \\ & -137 \mathrm{dBm} \\ & -134 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & -149 \mathrm{dBm} \\ & -150 \mathrm{dBm} \\ & -149 \mathrm{dBm} \\ & -149 \mathrm{dBm} \\ & -147 \mathrm{dBm} \\ & -142 \mathrm{dBm} \\ & -142 \mathrm{dBm} \\ & -140 \mathrm{dBm} \\ & \hline \end{aligned}$
Preamp on RF/MW (Option 503, 507, 513, 526)	$\begin{aligned} & 10 \mathrm{MHz} \text { to } 2.1 \mathrm{GHz} \\ & 2.1 \text { to } 3.6 \mathrm{GHz} \\ & 3.6 \text { to } 7.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \hline-161 \mathrm{dBm} \\ & -160 \mathrm{dBm} \\ & -160 \mathrm{dBm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-163 \mathrm{dBm} \\ & -162 \mathrm{dBm} \\ & -162 \mathrm{dBm} \\ & \hline \end{aligned}$
Millimeter-wave (Option 532, 544)	9 kHz to 1 MHz   1 MHz to 1.2 GHz   1.2 to 2.1 GHz   2.1 to 3.6 GHz   3.5 to 4.2 GHz   4.2 to 8.4 GHz   8.3 to 13.6 GHz   13.5 to 20 GHz   20 to 26.5 GHz   26.4 to 34 GHz   34.4 to 44 GHz	- 152 dBm   $-151 \mathrm{dBm}$   $-149 \mathrm{dBm}$   $-144 \mathrm{dBm}$   $-145 \mathrm{dBm}$   $-147 \mathrm{dBm}$   $-145 \mathrm{dBm}$   $-142 \mathrm{dBm}$   $-140 \mathrm{dBm}$   $-135 \mathrm{dBm}$	$\begin{aligned} & -130 \mathrm{dBm} \\ & -155 \mathrm{dBm} \\ & -154 \mathrm{dBm} \\ & -152 \mathrm{dBm} \\ & -147 \mathrm{dBm} \\ & -150 \mathrm{dBm} \\ & -150 \mathrm{dBm} \\ & -148 \mathrm{dBm} \\ & -145 \mathrm{dBm} \\ & -144 \mathrm{dBm} \\ & -140 \mathrm{dBm} \end{aligned}$

[^0]Displayed average noise level (DANL) (continued)


[^1]Second harmonic distortion (SHI)

	Source frequency	SHI (nominal)	
RF/MW   (Option 503, 507, 513, 526)	10 MHz to 1.8 GHz   1.75 to 7.0 GHz   7.0 to 11.0 GHz   11.0 to 13.25 GHz	$\begin{aligned} & +45 \mathrm{dBm} \\ & +65 \mathrm{dBm} \\ & +55 \mathrm{dBm} \\ & +50 \mathrm{dBm} \end{aligned}$	
Millimeter-wave (Option 532, 544)	10 MHz to 1.8 GHz 1.8 to 6.5 GHz 6.5 to 10 GHz 10 to 13.25 GHz 13.25 to 22 GHz		
Third-order intermodulation distortion (TOI)			
(Two -30 dBm tones at input mixer with tone separation $>5$ times IF prefilter bandwidth, 20 to $30^{\circ} \mathrm{C}$, see Specifications Guide for prefilter bandwidths)			
		TOI	TOI (typical)
RF/MW   (Option 503, 507, 513, 526)	100 to 400 MHz   400 MHz to 1.7 GHz   1.7 to 3.6 GHz   3.6 to 5.1 GHz   5.1 to 7.0 GHz   7.0 to 13.6 GHz   13.6 to 26.5 GHz	$\begin{aligned} & +10 \mathrm{dBm} \\ & +11 \mathrm{dBm} \\ & +13 \mathrm{dBm} \\ & +11 \mathrm{dBm} \\ & +13 \mathrm{dBm} \\ & +11 \mathrm{dBm} \\ & +9 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +14 \mathrm{dBm} \\ & +15 \mathrm{dBm} \\ & +17 \mathrm{dBm} \\ & +17 \mathrm{dBm} \\ & +17 \mathrm{dBm} \\ & +15 \mathrm{dBm} \\ & +14 \mathrm{dBm} \end{aligned}$
Preamp on RF/MW   (Option 503, 507, 513, 526)	30 MHz to 3.6 GHz (two -45 dBm tones at preamp) 3.6 to 7 GHz (two -50 dBm tones at preamp)		0 dBm nominal   -18 dBm nominal
Millimeter-wave (Option 532, 544)	10 to 100 MHz 100 MHz to 3.95 GHz 3.95 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.5 to 44 GHz	$\begin{aligned} & +12 \mathrm{dBm} \\ & +15 \mathrm{dBm} \\ & +15 \mathrm{dBm} \\ & +15 \mathrm{dBm} \\ & +11 \mathrm{dBm} \\ & +10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +17 \mathrm{dBm} \\ & +19 \mathrm{dBm} \\ & +18 \mathrm{dBm} \\ & +18 \mathrm{dBm} \\ & +17 \mathrm{dBm} \\ & +17 \mathrm{dBm} \text { (nominal) } \\ & +13 \mathrm{dBm} \text { (nominal) } \end{aligned}$
Preamp on, millimeter-wave (Option 532, 544)	30 MHz to 3.6 GHz (two -45 dBm tones at preamp level) 3.6 to 26.5 GHz (two -50 dBm tones at preamp level)		0 dBm (nominal)   -18 dBm (nominal)

[^2]Nominal dynamic range for Options 503, 507, 513 and 526


Figure 1. Nominal dynamic range - Band 0 , for second and third order distortion, 9 kHz to 3.6 GHz

Nominal dynamic range bands 1-4 for RF/ $\mu \mathrm{W}$ EXA


Figure 2. Nominal dynamic range - Bands 1 to 4, for second and third order distortion, 3.6 GHz to 26.5 GHz

Phase noise 1	Offset	Specification	Typical
RF/MW	100 Hz	$-84 \mathrm{dBc} / \mathrm{Hz}$	$-88 \mathrm{dBc} / \mathrm{Hz}$
(Option $503,507,513,526)$	1 kHz	-	$-98 \mathrm{dBc} / \mathrm{Hz}$ nominal
Noise sidebands	10 kHz	$-99 \mathrm{dBc} / \mathrm{Hz}$	$-102 \mathrm{dBc} / \mathrm{Hz}$
$\left(20\right.$ to $\left.30^{\circ} \mathrm{C}, \mathrm{CF}=1 \mathrm{GHz}\right)$	100 kHz	$-112 \mathrm{dBc} / \mathrm{Hz}$	$-114 \mathrm{dBc} / \mathrm{Hz}$
	1 MHz	$-132 \mathrm{dBc} / \mathrm{Hz}$	$-135 \mathrm{dBc} / \mathrm{Hz}$
	10 MHz	-	$-143 \mathrm{dBc} / \mathrm{Hz}$ nominal

1. For nominal phase noise values with the RF/MWEXA (Option 503, 507, 513, or 526), refer to Figure 3.


Figure 3. Nominal phase noise at different center frequencies for RF/MW EXA (Option 503, 507, 513, or 526)

Phase noise 1	Offset	Specification	Typical
Millimeter-wave	100 Hz	$-84 \mathrm{dBc} / \mathrm{Hz}$	$-88 \mathrm{dBc} / \mathrm{Hz}$
(Option 532, 544)	1 kHz	-	$-101 \mathrm{dBc} / \mathrm{Hz}$ nominal
Noise sidebands	10 kHz	$-103 \mathrm{dBc} / \mathrm{Hz}$	$-106 \mathrm{dBc} / \mathrm{Hz}$
$\left(20\right.$ to $30^{\circ} \mathrm{C}, \mathrm{CF}=1 \mathrm{GHz}$ )	100 kHz	$-115 \mathrm{dBc} / \mathrm{Hz}$	$-116 \mathrm{dBc} / \mathrm{Hz}$
	1 MHz	$-135 \mathrm{dBc} / \mathrm{Hz}$	$-137 \mathrm{dBc} / \mathrm{Hz}$
	10 MHz	-	$-149 \mathrm{dBc} / \mathrm{Hz}$ nominal

1. For nominal phase noise values with the millimeter-wave EXA (Option 532 or 544), refer to Figure 4.

Nominal phase noise at different center frequencies with RBW selectivity curves, optimized phase noise versus offset frequency


Figure 4. Nominal phase noise at different center frequencies for millimeter-wave EXA (Option 532 or 544)

## PowerSuite Measurement Specifications

Channel power		
Amplitude accuracy, W-CDMA or IS95 (20 to $30^{\circ} \mathrm{C}$, attenuation $=10 \mathrm{~dB}$ )	$\pm 0.94 \mathrm{~dB}( \pm 0.30 \mathrm{~dB} 95$ th percentile)	
Occupied bandwidth		
Frequency accuracy	$\pm$ [span/1000] nominal	
Adjacent channel power		
Accuracy, W-CDMA (ACLR) (at specific mixer levels and ACLR ranges)	Adjacent	Alternate
$\begin{aligned} & \text { MS } \\ & \text { BTS } \end{aligned}$	$\begin{aligned} & \pm 0.22 \mathrm{~dB} \\ & \pm 1.07 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.34 \mathrm{~dB} \\ & \pm 1.00 \mathrm{~dB} \end{aligned}$
Dynamic range (typical) Without noise correction With noise correction	$\begin{aligned} & -68 \mathrm{~dB} \\ & -73 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -74 \mathrm{~dB} \\ & -76 \mathrm{~dB} \end{aligned}$
Offset channel pairs measured	1 to 6	
ACP measurement and transfer time (fast method)	14 ms nomi	
Multiple number of carriers measured	Up to 12	
Power statistics CCDF		
Histogram resolution	0.01 dB	
Harmonic distortion		
Maximum harmonic number	10th	
Result	Fundamenta	harmonics power ( dBc )
Intermod (TOI)	Measure th	and intercepts from to
Burst power		
Methods	Power above threshold, power within burst width	
Results	Single burst output power, average output power, maxi within burst, burst width	
Spurious emission		
W-CDMA ( 1 to 3.6 GHz) table-driven spurious signals; search across regions		
Dynamic range Absolute sensitivity	$\begin{aligned} & 93.1 \mathrm{~dB} \\ & -79.4 \mathrm{dBm} \end{aligned}$	( 98.4 dB typical) ( -85.4 dBm typical)
Spectrum emission mask (SEM)		
cdma2000 ${ }^{\circledR}$ ( 750 kHz offset)   Relative dynamic range ( 30 kHz RBW)   Absolute sensitivity   Relative accuracy	$\begin{aligned} & 74.0 \mathrm{~dB} \\ & -94.7 \mathrm{dBm} \\ & \pm 0.11 \mathrm{~dB} \end{aligned}$	(81.0 dB typical) ( -100.7 dBm typical)
3GPP W-CDMA (2.515 MHz offset)   Relative dynamic range ( 30 kHz RBW)   Absolute sensitivity   Relative accuracy	$\begin{aligned} & 76.5 \mathrm{~dB} \\ & -94.7 \mathrm{dBm} \\ & \pm 0.12 \mathrm{~dB} \end{aligned}$	( 83.9 dB typical)   ( -100.7 dBm typical)

## General Specifications

Temperature range	
Operating	0 to $55^{\circ} \mathrm{C}$
Storage	-40 to $70^{\circ} \mathrm{C}$
EMC	

Complies with European EMC Directive 2004/108/EC

- IEC/EN 61326-1 or IEC/EN 61326-2-1
- CISPR Pub 11 Group 1, class A
- AS/NZS CISPR 11:2002
- ICES/NMB-001

This ISM device complies with Canadian ICES-001
Cet appareil ISM est conforme à la norme NMB-001 du Canada

## Safety

Complies with European Low Voltage Directive 73/23/EEC, amended by 93/68/EEC

- IEC/EN 61010-1 2nd Edition
- Canada: CSA C22.2 No. 61010-1
- USA: UL 61010-1 2nd Edition


## Audio noise

Acoustic noise emission	Geraeuschemission
LpA $<70 \mathrm{~dB}$	$\mathrm{LpA}<70 \mathrm{~dB}$
Operator position	Am Arbeitsplatz
Normal position	Normaler Betrieb
Per ISO 7779	Nach DIN 45635 t. 19
Environmental stress	

Samples of this product have been type tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements	
Voltage and frequency (nominal)	$\begin{aligned} & 100 \text { to } 120 \mathrm{~V}, 50 / 60 / 400 \mathrm{~Hz} \\ & 220 \text { to } 240 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \hline \end{aligned}$
Power consumption On Standby	350 W maximum 20 W
Display	
Resolution Size	$\begin{aligned} & 1024 \times 768, \text { XGA } \\ & 213 \mathrm{~mm}(8.4 \mathrm{in} .) \text { diagonal (nominal) } \end{aligned}$
Data storage	
Internal External	$\geq 80 \mathrm{~GB}$ nominal (removable solid state drive) Supports USB 2.0 compatible memory devices
Weight (without options)	
Net Shipping	16 kg ( 35 lbs ) nominal $28 \mathrm{~kg}(62 \mathrm{lbs})$ nominal
Dimensions	
Height Width Length	$\begin{aligned} & 177 \mathrm{~mm}(7.0 \mathrm{in}) \\ & 426 \mathrm{~mm}(16.8 \mathrm{in}) \\ & 368 \mathrm{~mm}(14.5 \mathrm{in}) \end{aligned}$
Warranty	

The EXA signal analyzer is supplied with a one-year warranty

## Calibration cycle

The recommended calibration cycle is two years; calibration services are available through Agilent service centers

## Inputs and Outputs

Front panel	
RF input connector Standard (Option 503, 507, 513, or 526) Standard (Option 532 or 544)	Type-N female, $50 \Omega$ nominal 2.4 mm male, $50 \Omega$ nominal
Probe power Voltage/current	$+15 \mathrm{Vdc}, \pm 7 \%$ at 150 mA max nominal   $-12.6 \mathrm{Vdc}, \pm 10 \%$ at 150 mA max nominal
USB 2.0 ports Master (2 ports) Standard Connector Output current	Compatible with USB 2.0 USB Type-A female 0.5 A nominal
External mixing, Option EXM (available only with EXA millimeter wave, Option 532 or 544)	
Connection port Connector Impedance Functions	SMA, female   $50 \Omega$ nominal   Triplexed for mixer bias, IF input and LO output
Mixer bias range   IF input center frequency   Narrowband IF path   LO output frequency range	$\pm 10 \mathrm{~mA}$ in $10 \mu \mathrm{~A}$ step   322.5 MHz   3.75 to 14.0 GHz
Rear panel	
10 MHz out   Connector Output amplitude Frequency	BNC female, $50 \Omega$ nominal   $\geq 0 \mathrm{dBm}$ nominal   $10 \mathrm{MHz} \pm$ ( 10 MHz x frequency reference accuracy)
Ext Ref In   Connector   Input amplitude range Input frequency Frequency lock range	BNC female, $50 \Omega$ nominal   -5 to 10 dBm nominal   10 MHz nominal   $\pm 5 \times 10^{-6}$ of specified external reference input frequency
Trigger 1 and 2 inputs Connector Impedance Trigger level range	BNC female   $>10 \mathrm{k} \Omega$ nominal   -5 to 5 V
Trigger 1 and 2 outputs Connector Impedance Level	BNC female $50 \Omega$ nominal 5 V TTL nominal
Monitor output   Connector   Format   Resolution	VGA compatible, 15 -pin mini D-SUB   XGA ( 60 Hz vertical sync rates, non-interlaced) Analog RGB $1024 \times 768$

Rear panel

Noise source drive +28 V (pulsed) Connector	BNC female
SNS Series noise source connector	For use with Agilent SNS Series noise sources
Analog out Connector	BNC female (used by Option YAS)
USB 2.0 ports Master (4 ports)   Standard   Connector   Output current Slave (1 port) Standard Connector Output current	Compatible with USB 2.0   USB Type-A female   0.5 A nominal   Compatible with USB 2.0   USB Type-B female   0.5 A nominal
GPIB interface Connector GPIB codes GPIB mode	IEEE-488 bus connector   SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0   Controller or device
LAN TCP/IP interface Standard Connector	1000Base-T   RJ45 Ethertwist
IF output Connector Impedance	SMA female, shared by Option CR3 and CRP $50 \Omega$ nominal
Wideband IF output, Option CR3	
Center frequency SA mode or I/Q analyzer with IF BW $\leq 25 \mathrm{MHz}$ with Option B40	$\begin{aligned} & 322.5 \mathrm{MHz} \\ & 250 \mathrm{MHz} \end{aligned}$
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth   Low band High band, with preselector High band, with preselector bypassed	Up to 140 MHz (nominal)   Depends on center frequency Up to 410 MHz
Programmable IF output, Option CRP	
Center frequency Range Resolution	$\begin{aligned} & 10 \text { to } 75 \mathrm{MHz} \text { (user selectable) } \\ & 0.5 \mathrm{MHz} \\ & \hline \end{aligned}$
Conversion gain	-1 to +4dB (nominal) plus RF frequency response
Bandwidth   Output at 70 MHz center   Low band or high band with preselector bypassed ${ }^{1}$ Preselected band	100 MHz (nominal)   Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	$\leq-88 \mathrm{dBm}$ (nominal)

[^3]
## I/Q Analyzer

Frequency				
Frequency span   Standard Option B25 (standard) Option B40 ${ }^{1}$	10 Hz to 10 10 Hz to 25 10 Hz to 40	MHz MHz MHz		
Resolution bandwidth (spectrum measurement)				
Range Overall $\begin{aligned} & \text { Span }=1 \mathrm{MHz} \\ & \text { Span }=10 \mathrm{kHz} \\ & \text { Span }=100 \mathrm{~Hz} \end{aligned}$	100 mHz to   50 Hz to 1   1 Hz to 10   100 mHz to	MHz Hz Hz 00 Hz		
Window shapes				
Flat top, Uniform, Hanning, Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B $70 \mathrm{~dB}, \mathrm{~K}-\mathrm{B} 90 \mathrm{~dB}$ and K-B 110 dB )				
Analysis bandwidth				
Standard   Option B25 (standard)   Option B40 ${ }^{1}$	10 Hz to 10 10 Hz to 25 10 Hz to 40	MHz MHz MHz		
IF frequency response (standard $10 \mathrm{MHz} \mathrm{IF} \mathrm{path)}$				
IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $30{ }^{\circ} \mathrm{C}$ )				
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
$\begin{aligned} & \leq 3.6 \\ & 3.6<\mathrm{f} \leq 26.5 \\ & 3.6<\mathrm{f} \leq 26.5 \\ & \mathrm{f}>26.5 \text { (Option } 532 \text { or } 544 \text { ) } \end{aligned}$	$\begin{aligned} & \leq 10 \\ & \leq 10 \\ & \leq 10 \\ & \leq 10 \end{aligned}$	n/a   on off ${ }^{2}$ on	$\begin{aligned} & \pm 0.40 \mathrm{~dB} \\ & \pm 0.45 \mathrm{~dB} \end{aligned}$	0.04 dB nomina 0.25 dB nominal 0.04 dB nominal 0.20 dB nominal
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
$\begin{aligned} & <3.6 \\ & 3.6 \leq f \leq 26.5 \\ & \geq 3.6 \text { (Option } 532 \text { or } 544 \text { ) } \end{aligned}$	$\begin{aligned} & \leq 10 \\ & \leq 10 \\ & \leq 10 \end{aligned}$	$\mathrm{n} / \mathrm{a}$   off ${ }^{1}$ on	$\begin{aligned} & 0.4^{\circ} \\ & 0.4^{\circ} \\ & 1.4^{\circ} \end{aligned}$	$\begin{aligned} & 0.1^{\circ} \\ & 0.1^{\circ} \\ & 0.4^{\circ} \end{aligned}$
Data acquisition (10 MHz IF path)				
Time record length IO analyzer	4,000,000 IO sample pairs			
Sample rate at ADC Option DP2, B40 or MPB ${ }^{2}$ None of the above	$\begin{aligned} & 100 \mathrm{MSa} / \mathrm{s} \\ & 90 \mathrm{MSa} / \mathrm{s} \end{aligned}$			
ADC resolution Option DP2, B40 or MPB ${ }^{2}$ None of the above	16 bits   14 bits			
1. Available only on RF/MW EXA (O)	1. Available only on RF/MW EXA (Option $503,507,513$, or 526 ).			

## Option B25 (standard) 25 MHz analysis bandwidth

Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
$\begin{aligned} & \leq 3.6 \\ & 3.6<f \leq 26.5 \\ & 3.6<f \leq 26.5 \\ & >26.5 \text { (Option } 532 \text { or } 544 \text { ) } \end{aligned}$	$\begin{aligned} & 10 \text { to } \leq 25 \\ & 10 \text { to } \leq 25 \\ & 10 \text { to } \leq 25 \\ & 10 \text { to } \leq 25 \end{aligned}$	n/a   on   off ${ }^{1}$   on	$\begin{aligned} & \pm 0.45 \mathrm{~dB} \\ & \pm 0.45 \mathrm{~dB} \end{aligned}$	0.051 dB nominal 0.45 dB nominal 0.05 dB nominal 0.45 dB nominal
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
$\begin{aligned} & 0.02 \leq f<3.6 \\ & 3.6 \leq f \leq 26.5 \\ & 3.6 \leq f \leq 26.5 \end{aligned}$	$\begin{aligned} & \leq 25 \\ & \leq 25 \\ & \leq 25 \end{aligned}$	n/a   on   off ${ }^{1}$	$\begin{aligned} & 0.6^{\circ} \\ & 4.5^{\circ} \\ & 1.9^{\circ} \end{aligned}$	$\begin{aligned} & 0.14^{\circ} \\ & 1.2^{\circ} \\ & 0.4^{\circ} \end{aligned}$
Data acquisition (25 MHz IF path)				
Time record length (IO pairs) IO Analyzer   89600 software or N9064A   Option DP2, B40 or MPB ${ }^{2}$   None of the above	4,000,000 IO s   32-bit packing   536 MSa   4,000,000 IO	airs   64-bit packing   268 MSa   pairs (independe	ata packing)	Memory   2 GB
Sample rate at ADC Option DP2, B40 or MPB ${ }^{2}$ None of the above	$\begin{aligned} & 100 \mathrm{MSa} / \mathrm{s} \\ & 90 \mathrm{MSa} / \mathrm{s} \end{aligned}$			
ADC resolution Option DP2, B40 or MPB ${ }^{2}$ None of the above	16 bits 14 bits			
Option B40 40 MHz analysis bandwidth ${ }^{3}$				
IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $30{ }^{\circ} \mathrm{C}$ )				
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
$\begin{aligned} & 0.03 \leq f<3.6 \\ & 3.6 \leq f \leq 26.5 \end{aligned}$	$\begin{aligned} & \leq 40 \\ & \leq 40 \end{aligned}$	n/a $\text { off }{ }^{1}$	$\begin{aligned} & \pm 0.3 \mathrm{~dB} \\ & \pm 0.25 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.08 \mathrm{~dB} \text { nominal } \\ & \pm 0.08 \mathrm{~dB} \text { nominal } \end{aligned}$
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
$\begin{aligned} & 0.02 \leq f<3.6 \\ & 3.6 \leq f \leq 26.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { n/a } \\ & \text { off } 1 \end{aligned}$	$\begin{aligned} & 0.2^{\circ} \\ & 5^{\circ} \end{aligned}$	$\begin{aligned} & 0.05^{\circ} \\ & 1.4^{\circ} \end{aligned}$
Data acquisition (40 MHz IF path)				
Time record length (IO pairs) IO analyzer 89600 VSA software or N9064A VXA	4,000,000 samples (l/0 pairs)			
Length (IO sample pairs) Length (time units)	536 MSa	268 MSa	Samples/(span $\times 1.25$ ( (nominal)	
Sample rate   At ADC   IO pairs   ADC resolution	200 Msa /s   12 bits		Span x 1.25 (	

[^4]
## Related Literature

## Brochure 5989-6527EN

Configuration Guide 5989-6531EN

For more information or literature resources please visit the web: www.agilent.com/find/exa
cdma2000 ${ }^{\text {is }}$ a registered certification mark of the Telecommunications Industry Association.
Windows ${ }^{\circledR}$ and MS Windows are U.S. registered trademarks of Microsoft® Corporation.

## Agilent Email Updates

## www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

## LKI

## www.Ixistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

## Agilent Channel Partners

 uww.agilent.com/find/channelpartnersGet the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.
Agilent
Advantage
Agilent Advantage Services is committed
to your success throughout your equip-
ment's lifetime. To keep you competitive,
we continually invest in tools and
processes that speed up calibration and
repair and reduce your cost of ownership.
You can also use Infoline Web Services
to manage equipment and services more
effectively. By sharing our measurement
and service expertise, we help you create
the products that change our world.
www.agilent.com/find/advantageservices

## www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973600$
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4545801215
Finland	$358(0) 108552100$
France	$0825010700^{*}$
	${ }^{*} 0.125 € /$ minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1189276201$

For other unlisted countries:
www.agilent.com/find/contactus
Revised: January 6, 2012
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2012
Published in USA, April 27, 2012
5989-6529EN


[^0]:    1. Nis the LO multiplication factor.
[^1]:    1. Nis the LO multiplication factor.
[^2]:    1. N is the $L O$ multiplication factor.
[^3]:    1. Option MPB installed and enabled.
[^4]:    1. Option MPB is installed and enabled. Option MPB is only available on RF/MW EXA (Option 507, 513, or 526).
    2. These options are not available on millimeter-wave EXA (Option 532 or 544).
    3. (1)Option B40 is only available on RF/MW EXA (Option $503,507,513$, or 526 ).
