

- Test Receiver ESH 2 ♦ 9 kHz to 30 MHz/-30* to +137 dBμV
 - Synthesizer-based test receiver offering crystal-referenced frequency display, 100 Hz resolution
 - Level range >165 dB
 - Automatic voltage calibration at the push of a button
 - Interference measurements in line with CISPR, VDE (with model 52) as well as MIL and VG
 - AC supply and battery operation
 - *) The sensitivity is increased by about: 7 dB when using the Preamplifier ESH 3-Z3.

The manually operated **Test Receiver ESH 2** with high sensitivity and overload protection offers a very wide dynamic range and maximum ease of operation. Compact construction, the wide range of power supplies that can be used, and low power consumption make the receiver suitable for use in fixed stations as well as for mobile and portable applications.

Thanks to its excellent characteristics and the availability of a wide range of accessories, the applications of the ESH 2 include **interference measurements** and **field-strength measurements**; for use of ESH 2 as the Field-strength Meter HFH 2 see page 299.

Covering the frequency range from 9 kHz to 30 MHz, the ESH 2 can tune to any signal from LF to the upper shortwave range, where it overlaps with the ESV (page 300).

Characteristics, uses (ESH 2 alone)

The ESH 2 needs no accessories to operate as a selective voltimater (test receiver) with a level range from -30 to +137 dBμV, for example, for measurements, in 50- Ω coaxial systems. The Active Probe ESH 2-Z2 is available for measuring high-impedance test items. Relative and absolute selective voltage measurements are possible even in the presence of a multitude of signals.

Automatic calibration at the push of a button and excellent receiver selectivity permit accurate measurements of closely spaced signals with very different levels, for example: SSB two-tone measurements, spurious-content and sideband-noise measurements on signal generators, intermodulation and distortion measurements, noise figure measurements.

The calibration-generator output can be used for twoport measurements over an attenuation range of up to 110 dB and a gain range of more than 50 dB; see diagram on the right.

Signal evaluation Four switch-selected IF bandwidths and numerous test outputs make it easy to carry out a wide range of measurements:

wideband IF output, 75 MHz, for the connection of a panoramic display or a wave analyzer,

narrowband IF output, 30 kHz, for an oscilloscope,

AM/FM demodulator outputs,

recorder output for level and frequency offset,

output for the connection of a frequency counter.

Overload of the input or of other important circuits is detected by the test receiver and automatically signalled.

Auxiliary instruments for additional applications

Interference measurement. Interference voltage and interference current can be measured in accordance with the relevant standards (CISPR, FCC, MIL, VG, VDE). The following accessories are available for this purpose (see specifications on page 289 and page 294):

Current Probe ESH 2-Z1
Active Probe ESH 2-Z2
Passive Probe ESH 2-Z3
Artificial Mains Network ESH 2-Z5 and
Pulse Limiter ESH 3-Z2
Preamplifier ESH-Z3

In addition to the overload indication and automatic calibration which have already been mentioned, the ESH 2 has other features which are particularly important in interference measurements:

level indication taking into consideration the conversion factor of the sensor, e.g. directly in dBμA,

frequency-dependent automatic switchover of weighting and of calibration pulse for CISPR 1 or 3,

peak indication with selectable hold time,

IF bandwidths of 200 Hz and 9 kHz in line with CISPR.

IF bandwidth of 10 kHz in line with MIL.

In interference measurements the Loop Antenna HFH 2-Z2 is used to measure the magnetic component and the Rod Antenna HFH 2-Z1 the electric component.

Radiomenitoring, remote frequency measurement. In conjunction with a receiving antenna and a frequency counter the test receiver can be used in radiomonitoring, since it features excellent frequency accuracy and stability and is capable of demodulating A1A, A3E, J3E (formerly A1, A3, A3J) and FM transmissions. With a frequency counter connected to the ESH 2 generator output, high-accuracy remote frequency measurements can be performed. The test receiver then functions as an active filter of high selectivity.

Field-strength measurements. Completed by the following antennas the test receiver can be used for field-strength measurements (see also Field-strength Meter HFH 2 on page 299);

Active Rod Antenna
Active Loop Antenna
Inductive Probe

HFH 2-Z1 (9 kHz to 30 MHz)
HFH 2-Z2 (9 kHz to 30 MHz)
HFH 2-Z4 (100 kHz to 30 MHz)

Another Loop Antenna, HFH 2-Z3, is available as an accessory for measurements on very weak signals in the frequency range of 9 kHz to 1 MHz. The Roof-mounting Kit HFH 2-Z5 permits the HFH 2-Z2 to be operated on top of test vehicles.

Propagation measurements and measurements of coverage in the radiomonitoring field can also be carried out; with an YT recorder connected to the corresponding output, field-strength observation is possible over extended periods of time.

The digital readout of the reference level in $dB\mu V/m$, which takes into consideration the conversion factor of the antenna used, is an important asset in field-strength measurements.

Ease of operation, setting functions

The automatic correction of the level indication taking into account antenna factors and conversion factor of sensors, the automatic level calibration and many more features affording ease of operation make it possible to make do with a minimum of operating controls. Due to the latter and the clear arrangement of the front panel, even unskilled staff can soon learn to operate the instrument.

Frequency setting The whole range from 9 kHz to 30 MHz is covered without band switching, in 100-Hz/1-kHz or 10-kHz steps. The 6-digit LCD frequency display is crystal-controlled. The frequency setting is retained in a memory even while the instrument is switched off.

Sensitivity, measurement range. The measurement range for sinewave signals of $-30~dB\mu V$ to $+137~dB\mu V$ is determined at the lower limit by the inherent noise at 200 Hz IF bandwidth and at the upper limit by the maximum dissipation in the RF attenuator. Sensitivity is set for the RF and IF sections using attenuators with 10-dB steps, see front panel section.

Front panel section with controls for level, bandwidth, weighting and indication

In the AUTO position of the IF attenuator, the IF gain is automatically set as a function of bandwidth and display mode in such a way that the receiver's internal noise on the display is always below 0 dB.

Bandwidths, signal weighting IF bandwidth is switchselected at 10 kHz, 2.4 kHz, 500 Hz or 200 Hz. The signal weighting mode can be switched to average or peak with different hold times (e.g. 3 s) or noise weighting in line with CISPR.

ESH 2

Lovel indication. The meter has a linear range of 20 dB and two logarithmic ranges of 40 and 60 dB. The measured level is obtained from the meter indication and the digital reference value displayed in the same line, e.g. -20 dBuV in the photo on page 287.

Overload indication If one of the stages in the metering path of the receiver is overloaded the reference-value display flashes. This indication operates with sinewave noise as well as with pulses.

internal calibration, battery check. Automatic calibration, initiated at the push of button or when the bandwidth is changed, quarantees reproducibility of the mescurements and ease of operation. In the case of battery operation the state of charge of the batteries can also be checked at the push of a button.

Front-panel section: demodulation and AF settings: output for calibration signal and frequency measurement; RF input and power supply

Signal demodulation, outputs. The ESH 2 is designed for a multitude of signal waveforms including SSB and frequency modulation: it can be switched to NON, A1A, A1B, A3E, J3E, formerly A0, A1, A3, A3J (upper or lower sideband) and F3E as well as G3E. Numerous outputs are provided for signal evaluation, recording or plotting:

- wideband output at 1st IF (75 MHz) for the connection of a panoramic display
- marrowband output at 30-kHz IF for the connection of an oscilloscope
- AM and FM demodulator outputs
- outputs for the connection of recorders for level and frequency offset

The power supply is either direct from a 12-V source, from the 12-V battery pack (delivered without batteries), from a 24-V supply (additional adapter required) or from the local AC supply via the power supply unit (safety class II; see photo on the right), which can at the same time recharge or tricklecharge the 12-V battery.

Description

The Test Receiver ESH 2 is a triple heterodyne receiver covering the receiving range from 9 kHz to 30 MHz by means of 16 RF filters, the first 14 of which are fixed-tuned and the upper two tracking with the receive frequency via varicaps. The intermediate frequencies are 75 MHz, 9 MHz and 30 kHz. The signal to be measured passes from the RF attenuator, which is adjustable in steps of 10 dB and through which the calibration signal is fed in during calibration, via the filter group to the first mixer, where it is converted to the first IF of 75 MHz by a synthesizer.

After passing through a crystal filter of 10 kHz bandwidth the signal is converted from 75 MHz to 9 MHz. Two further crystal filters, which can be switch-selected, provide bandwidths of 2.4 kHz and 500 Hz. The following 9-MHz amplifier contains the control element for the nominal gain of the receiver with automatic calibration. After conversion to the last intermediate frequency of 30 kHz the signal is amplified in a 40-dB amplifier, this range being adjustable in 10-dB steps. The IF bandwidth can be decreased to 200 Hz using a mechanical filter. The signal passes through a logarithmic or a linear amplifier with an active demodulator or undergoes interference weighting according to CISPR Publicatoin 1 or 3, depending on the selected indicating mode. A second, independent 30-kHz IF amplifier with AGC operates in parallel with the indicating branch into a demodulator for AM, SSB and FM.

Construction

Even though heavy shielding is provided, this compact receiver weighs only 20 kg. The modern modular design, using primarily plug-in PC boards on a motherboard, makes the ESH 2 very easy to service, whilst at the same time the interior space of the receiver is optimally utilized. The use of high-grade components and the low self-heating as a result of the moderate power drain (approx. 12 W in battery operation) further cut down the failure expectancy of the receiver. A plastic cover may be put on the front or rear panel to protect the receiver during transport or when it is being operated outdoors.

Specifications of ESH 2 --

Frequency range: Resolution (step width)

9 kHz to 29.9999 MHz quasicontinuous with knob 100 Hz, 1 kHz or 10 kHz, switch-selected 6-digit LCD, switchable back-lighting 1.5 × 10-5 + 50 Hz¹)

RF Ing /SWF	out With	RF attenuation RF attenuation	∴	_m = 50 Ω. 1.2	BNC female	•
naxin Hiw	RF at	RF attenuation put level itenuation 0 dB itenuation ≥10		30 dBuV		
и́ахіп vith R	ium p	uise energy (⊀ nuation ≥20 d	=10 μs) B 1	mW.s		
niem	al inpi	radiation it filters i kHz			lers	
450	LLINE	o <10 MHz MHz MHz	X	4 authorston	a filtara	
mage	-treau	e immunity, r sency rejection ss: a) frequency	(1st IF)	>100 dB, ty >100 dB, ty to 150 kHz	p. 120 dB p. 110 dB	
Гуре		(signal s	pacing ≥40 cy range 156 S/N	kHz) 0 kHz to 30	47	int
, ype		level dBµV	ratio dB	- 31	guaranteed Bm	
a)	k ₂ d ₂ d ₃	100 100 90	>55 >50 >65		+47 +43 +15	+60 +55 +20
b)	ky de do	100 100 100	>80 >60 >63		+73 +53 +20	+100 +75 +25
	smodu	lation				
aw	ay pro	ering signal with duces 3% mo	dulation of a	20-dBuV :	signal .	100 kHz
RF lc	akago	of		>100 ժBμ۷		
stri	ength (of 10 V/m (with	f + f ₀)	<1 dB		
1 st IF		te frequencie		75 MHz 9 MHz 30 KHz		
IF be	ndwic	iths (for avera	ge and peak	()	0.40	6.00.40
Nomi band	nai width			3-dB bandw.	6-dB bandw (±10%)	6:60-dB ratio
200 F 500 F	tz²) . tz .,			160 Hz³) 550 Hz³)	200 Hz 630 Hz	=1:5 =1:5
10 kF	۱z	!h (-6 dB) for		2.4 kHz 8 kHz ³)	2.6 kHz 9.5 kHz	≈1:1.8 ≈1:2.4
meas	ureme	ents acc. to Cl 3) and VDE 087	SPA 15			No. of the last
loter	nal n	olse a (I _{in} >50		(automatic typ. values	switchover) aua	rant. values
Aver Peak	age	B = 200 Hz B = 200 Hz			K -	27 dBµV 19 dBµV
CISE	P 1	B = 9 kH	Z	–6 dBµ∀	<~	3 dΒμV 25 dΒμV
		noise indication in the noise in the noise in the noise in the noise indication in the noise indicatio	Hz)	see diagra	n	
	1,647		d8 1 20-	< Cuart	inteed valu	3 5
	. 15		10-		× 1	
7:36	age re er limit	Children Haadin Phowelest In	0+	9 20 30	40 50 ki	12
(3 dE	abov	e internal noisi			il noise	
Inhe	rent sc	ourious respondication	ses	equivalent	to <-6 dB I meter.	μV
		noes, linear		switchable 20 dB	back-lightin	v g
		logarithn battery o idication	nic heck	tolerance r	narker	
туре	35 OF IT	IGICATION		peak	3 s hold tim	e e
		dication error			material and a second s	in the second
	4: 40g	in. 20 dB dB above inte		<1 dB		Saumin
av V		great of law				
an V Add	itional	error of log, c emperature eff		<2 d8		- CO (C)

	sinewave generator	aÿ.
	. pulse generator . NON, A1A, A1B, A3E, J3E, F3E, G	iae
	AO, A1, A3, A3J (LSB, USB), F3	
age.		
	86 dBμV ±0.5 dB; 50 Ω. BNC female connector	1,5
у		
	. 12-contact Tuchel female . up to 3.5 V; 10 Ω; jack JK 34 . 50 Ω; BNC female connector <12 ±3 dB; bandwidth correspon	de
	to RF bandwidth	TO.
	2 V, bandwidth corresponds to IF bandwidth	
	. 10 kΩ; BNC female connector 1 V at 100% mod. . 10 kΩ; BNC female connector	
	±0.5 V for 5 kHz deviation 50-contact Amphenol female	
odee	connector ±5 V for ±5 kHz offset; 10 kΩ +5 V for fs	
	+2 V for fs 10 kΩ output impedance in all mo	ode
	lowpass filter simulating meter response acc. to CISPR (1, 3); E and output impedance as for levi	MF
	5/10 MHz, switch-selected;	
	EMF 1 V across 50 Ω, sinewave (BNC female connector)	
	10 to +45°C	
	 25 to +70°C (without batteries 10 to +60°C (with batteries) either via power supply unit or from 	" m
	battery pack, see photo on the le 110/125/220/235 V +10/-15%	eft
	47 to 420 Hz (60 VA); VDE 0411 safety class II (DIN 47 +12 V. 8.5 to 9.5 Ah,	411
	operating life =4 h per charge 4-contact special socket	
	supply: +10.8 to +14.5 V/=1 A 4-contact special socket	
	347 mm×206 mm×484 mm, 19 kg with power supply unit 21 kg with battery pack	
Π	Albert State Control	
	> Test Receiver ESH 2 303.2020.52	
	Battery pack (without batteries) battery connector:	
•	LEMO F.c 2304 6.7 50-contact Amphenol male conn	ecu
nts:		
- 40	ESH 2 Z1 338.3516.52	
edano	ESH 2-Z2 299.7210.52 ce) ESH 2-Z3 299.7810.52	
6)	ESH2-Z5 338.5219.53 SPR3) ESH3-Z2 357.8810.52	
0688.74 17	SPR3) ESH3-Z2 . 357.8810.52	
	ESH3-Z3 827.8016.52 ESH2Z11 349.7518.52	
nents	(details under HFH 2, page 299):	
	HFH 2-Z2 335.4711.52 HFH 2-Z3 335.6214.52	
	HFH 2-Z2 335.4711.52 HFH 2-Z3 335.6214.52 HFU-Z 100.1114.02 HFH 2-Z4 338.3016.52	
3)	HFH 2-25 335.5/18.02	
DH'V	338.4012.00 ESH2-Z6338.4312.02 ESH2-Z7338.4112.00	
ters:		010.02

Accessories for ESH2/ESH3

For field-strength and radio interference measurements

Overview

Designation		➤ Order No.	Page	Used with	Measurements
RF Current Probe	ESH 2-Z1	338.3516.52	294	ESH2, ESH3	Current measurement
Active Probe	ESH 2-Z2	299,7210,52	295	ESH2, ESH3	High-impedance voltage measurement
Passive Probe	ESH 2-Z3	299.7810.52	295	ESH2, ESH3	High-impedance voltage measurement
24-V Adapter	ESH 2-Z4	338,4512.02	297	ESH2, ESV	External DC operation
Artificial Mains Network	ESH 2-Z5	338 5219.53	297	ESH2, ESH3	Radio interference measurement (VDE/FCC)
19" Adapter	ESH 2-Z6	338.4312.02	298	ESH2, ESV	Rack integration
Service Kit	ESH 2-Z7	338.4112.00	298	ESH2, ESH3	Service
Attenuator	ESH2Z11	349.7518.52	295	ESH2, ESH3	High-imp, voltage meas., radio interf. meas.
Attenuator for ESH 2-Z3	ESH 2Z31	827.6513.02	295	ESH2, ESH3	High-impedance voltage measurement
Connecting Cable	ESH 3-Z1	349.6011.02	298	ESH2, ESH3	Connect, cable to XY recorder (ZSKT)
Pulse Limiter	ESH 3-Z2	357.8810.52	295	ESH2, ESH3	Protection of receiver input
	ESH 3-Z3	827.8016.52	294	ESH2, ESH3	Voltage and current measurement
Preamplifier	ESVP-K1	397,6018.02	308	ESH3, ESVP	
Applications Software			100000000000000000000000000000000000000		Various user programs
Applications Software	ESVP-K2	399.9014.02	308	ESH3, ESVP	Various user programs
Rod Antenna	HFH 2-Z1	335.3215.52	296	ESH2, ESH3	Field strength (E field, H field)
Loop Antenna	HFH 2-Z2	335.4711.52	294	ESH2, ESH3	Field strength (E field, H field)
Loop Antenna	HFH 2-Z3	335.6214.52	296	ESH2, ESH3.	Field strength (E field, H field)
Inductive Probe	HFH 2-Z4	338.3016.52	296	ESH2, ESH3	Field strength (E field, H field)
Roof-mounting Kit	HFH 2-Z5	335.5718.02	298	ESH2, ESH3	Field strength (HFH 2-Z2)
Tripod	HFU-Z	100.1114.02	297	ESH2, ESH3	Field strength (HFH 2-Z2/Z3)

Current measurements

Clamp-on RF Current Probe ESH2-Z1

Selective or broadband measurements of both very small and very large RF currents on conductors are easy to perform with the aid of the ESH 2-Z1. It is shielded against electrostatic effects and built to VDE 0876.

9 kHz to 30 MHz (between 9 and 100 kHz with fre- quency-dependent conversion
factor)
~30 dBµA, approx.
137 dBµA
1 S
0 dB referred to 1 S ²)
<1 dB 10 A
50 A
13.5 mm
-10 to +55°C
-25 to +70°C
BNC male
50 Ω
1 m
12-contact Tuchel-type
55 mm/20 mm
0.4 kg
► Clamp-on RF Current Probe
ESH 2-Z1 338.3516.52

Voltage and current measurement

Preamplifier ESH3-Z3

With the aid of the Preamplifier ESH3-Z3 the noise figure of the Test Receivers ESH2 and ESH3 is reduced by about 7 dB, so that the average value of noise at 200-Hz IF bandwidth is typically -37 dBµV. The Preamplifier is fed via the ESH2/3/supply and coding socket which is also used for

level display correction. The ESH3-Z3 is also fitted with a gated coding input to ensure that with a current probe or passive probe connected the level and unit display of the test receiver fitted with a preamplifier will be corrected.

Specifications	
Frequency range	10 dB
Frequency response flatness	max. ±0.5 dB, referred to 1 MH; 50 Ω
with ESH2/ESH3 at RF attenuation of 0 dB	<2 hm 125
Noise figure	<6 dB, typ. 4 dB
(output level) d ₃ intercept point (IP ₃)	. +13 dBm (typ.) +27 dDm (typ.)
RF input and output Coding for ESH 2/3 Coding	12-contact Tuchel male
General data Rated temperature range	~10.10.±50°C
Storage temperature range	25 to +70°C
Dimensions (W×H×D) Weight	160 mm×29 mm×110 mm
Order designation	Preamplifier ESH 3-Z3 827.8016.52
Accessories supplied	

High-impedance voltage measurements

Active Probe ESH 2-Z2/Passive Probe ESH 2-Z3

For high-impedance measurements of, say, narrowband wanted signals on lines or narrowband and broadband interference signals at the receiver input or antenna cabling, use of shielded probes is recommended. They contain internal highpass filter sections to reject supply voltages.

The **Active Probe ESH 2-Z2** is designed for measuring AC voltages over the frequency range 9 kHz to 30 MHz on lines that do **not** carry AC supply voltage.

The Passive Probe ESH 2-Z3 (to VDE 0876 standards) is particularly suitable for measuring radio interference voltages

Pulse Limiter ESH 3-Z2 Attenuator ESH 2Z11

High RF input levels as well as high-energy interfering pulses that may result from switching on or off the test item connected to an artificial mains network may cause damage to the RF input circuits of test receivers. The Pulse Limiter ESH 3-Z2 and the Attenuator ESH 2Z11 limit and reduce the

ESH 2-Z2 ESH 2-Z3

on, for example, AC-supply lines. The Attenuator ESH2-Z31 to VDE 0877, Part 1, is used for checking the noise source impedance.

Specifications	ESH 2-Z2	ESH 2-Z3
Frequency range	9 kHz to 3	30 MHz
Attenuation1)	. 10 dB	30 dB
Attenuation error		
$(Z_{\text{source}} = 50 \Omega) \dots \dots$. <1 d8	<+1/-3 dB
Measurement range using		
ESH 2/ESH 3		
(IF bandwidth 200 Hz.		
average value indication) Lower limit		100
(frequency-dependent)	20 dR ₀ V	+10 dBuV, approx.
(modesta) departeein,	approx.	, to upper, upprox.
Upper limit		150 dBuV
Input impedance		1500 Ω ± 2%
	shunted by 8 pF	shunted by 6 pF
Max input voltage	4	(with 50-Ω termination)
1<60 Hz	. 100 V	-
1<500 Hz		250 V
1 = 9 kHz to 30 MHz		30 V
Order designation	. > Active Probe	➤ Passive Probe
T	ESH 2-Z2	ESH 2-Z3
	299.7210.52	299.7810.52
Accessories supplied	. Accessories kit,	Probe tip
Recommended extres	100	
BNC Adapter URV-Z	. 241.1110.02	
Attenuator ESH 2-Z31		
1) Automatically taken into ac	count in the readout	on the ESH 2 and ESH 5

interference level. The pulse limiter is fitted with a coding plug for the Test Receivers ESH 2 and ESH 3 which then automatically take into account the insertion loss.

Specifications	446	
Pulse Limiter ESH3-Z2	56 - Table 1	
Frequency range	. 0 to 30 MHz . 10 ±0.3 dB	
MHz) VSWR with 50 Ω termination Input		
Output	. ≤1.25	
Pulse power-handling capacity	. see diagram	
General data		
Flated temperature range	25 to +70°C	
COGING (INSERTION IOSS)	. BNC (female/male) . 12-contact Tuchel male	
Dimensions (LxWxH) Weight	0.12 kg	
Order designation	➤ Pulse Limiter ESH 3-Z2 357.8810.52	
Attenuator ESH 2Z11		
Frequency range Insertion loss for f ≤500 MHz I ≤1000 MHz	20 ±0.25 dB 20 ±0.5 dB	
l ≤1500 MHz Characteristic impedance Power-handling capacity in	50 Ω	
continuous operation Pulse power-handling capacity		
General Data	and the second second second	
Rated temperature range		
Connectors Dimensions (length/diameter) Weight	. 97 mm/42 mm	
Section 2015		
Order designation	➤ Attenuator ESH2-Z11 349.7518.52	

Field-strength measurements

The recommended extras available for the ESH 2 and ESH 3 include four antennas:

Rod Antenna HFH 2-Z1 Broadband active Rod Antenna HFH 2-Z1 for use as a generalpurpose receiving amenna and for measuring the electrical fieldstrength component Loop Antenna HFH 2-Z2 Active Loop Antenna HFH 2-Z2 for measuring the magnetic field-strength component (on Tripod HFU-Z) Loop Antenna HFH 2-Z3 Active Loop Antenna HFH 2-Z3 for measuring extremely low field strength over the frequency range

9 to 150 kHz (1 MHz)

Inductive Probe HFH 2-Z4

Inductive Probe HFH 2-Z4 for simple approximate measurements of the magnetic field-strength component.

Minimum measurable field-strength level (for S/N=1) of the antennas HFH 2-Z1, -Z2 and Z3 as a function of the frequency (average-value indication and 200 Hz IF bandwidth). In the CISPR indicating mode the minimum measurable field-strength goes up by about 6 dB over the range 9 kHz to 149.9 kHz (CISPR 2) and every 123 dB over the transpance of the INTERCENT CONTROL O 3) and about 23 dB over the range 150 kHz to 30 MHz (CISPR 1).

	Rod Antenna	Loop Antenna	Loop Antenna	Inductive Probe
	HFH 2-Z1	HFH 2-Z2	HFH 2-Z3	HFH 2-Z4
Frequency range	9 kHz to 30 MHz	9 kHz to 30 MHz	9 kHz to 1 MHz	100 kHz to 30 MHz
Conversion factor k^3) (E \rightarrow V)	20 dB²), referred to 1/m <1 dB	20 dB, referred to 1/m <1 dB	10 dB, referred to 1/m <1 dB	80 dB, referred to 1/m <6 dB
Measurement range (IF bandwidth 200 Hz, average-value indication) Lower limit (frequency-dependent,				
see diagram above)	+15 to -10 dB _{it} V/m	9 kHz to 1 MHz; +40 to +10 dBµV/m; 1 MHz to 30 MHz;	+5 to -5 dBμV/m	.50 dBμV/m (≈0 dBμA/)
Upper limit (1-dB compression)	140 dBμV/m	+10 to +5 dBµV/m 140 dBµV/m	140 dBµV/m	>190 dBµV/m
Source impedance	30 Ω	50 Ω	50 Ω	50 Ω (±140 dBµA/m)
Max. output voltage into 50 Ω	I V	1 V	av	
General data				
Rated temperature range		-10 to +55°C -25 to +70°C	-10 to +55°C -25 to +70°C	-10 to +55°C -25 to +70°C
Inputs				2010 110 0
RF	BNC female 12-contact Tuchel male emale connector	BNC female 12-contact Tuchel male female connector	BNC female 12-contact Tuchel male female connector	BNC male 12-contact Tuchel male
Length of connecting cable	10 m	10 m	10 m	male connector
Current drain (±10 V. varies with output level)	<40 mA	<40 mA	<50 mA	
	n transport case, without cables: 3 kg	in transport case; without cables; 12 kg	without cables, with (without) transport case: 43 (17) kg	with cables. 0.3 kg
	ground net, dia, 2510 nd height: 1092	loop dia:	loop diagonal: 3350	-
Order designation	► Rod Antenna HFH 2-Z1 335-3215-52	► Loop Antenna HFH 2-Z2 335.4711.52	➤ Loop Aritenna HFH 2-Z3 335,6214.52	► Inductive Probe HFH 2-Z4 338.3016.52
	coexial cable (10 m), Supply/coding cable (10 m) 12-pole Tuchel emale connector	same as HFH 2-Z1	same as HFH 2-Z1	
Recommended extras		Tripod HFU-Z (in transport bag): 100.111	same as HFH 2-Z2 4.02	ga <u>.</u> Santa ang santa ang

¹⁾ Conversion factor = logarithm of the ratio between the output voltage and the input field strength; automatically taken into account in the readout on the ESH 2 and ESH 3. 2) Adaptable to k = 10 dB.

interference measurements

Artificial Mains Network ESH 2-Z5

For interference measurements on AC-supply-dependent loads a circuit must be provided to ensure that the AC supply voltage is supplied to the test item, on the one hand, and, on the other hand, that the AC supply represents a defined load impedance for the test item. Furthermore, provisions are made so that interference from the AC supply does not reach the test circuit, and that the defined interference voltage produced by the test item can be connected to a test receiver suitable for radio interference measurements, such as the ESH 2 or ESH 3.

The Artificial Mains Network ESH 2-Z5 is a V-network (50 $\mu H + 5 \; \Omega) \; || \; 50 \; \Omega$ in line with VDE 0876 and CISPR 3. It uses air-cored coils and contains an artificial hand and a choke to suppress interference on the ground line. A built-in blower with a separate AC supply provides automatically controlled cooling or continuous cooling, as required.

ESH 2-Z4

For phase switching in an automatic test system the Artificial Mains Network can also be remote-controlled via TTL control inputs using the R&S Controllers PUC, PCA5 and EZM.

Other accessories

24-V Adapter ESH 2-Z4

The ESH 2 as well as the ESV can be powered from a 24-V DC mains supply via the 24-V Adapter ESH 2-Z4 which may be mounted at the rear of the receiver in the place of the power supply or battery pack.

Specifications

Opcomodació	
Input voltage range (protected against reversal of polarity) Input connector (mating connector	+18 to +32 V
is supplied with the ESH 2-Z4).	6-way male standard
Oulput voltage	+12.5 V ±0.5 V
Output connector	4-contact female special
Maximum output current (short-circuit-proof)	2 A
Rated temperature range	10 to +45°C
Storage lemperature range	25 to +70°C
Dimensions (W×H×D)	205 mm×172×50 mm
Weight	
Order designation	> 24-V Adapter ESH 2-Z4
	338.4512.02
Assessation consists	
Accessories supplied	018 6946.00
Mating connector, lemale	

Other accessoires for use in radio-interference measurements are to be found on page 295, for example

Attenuator ESH 2-Z11 and Pulse Limiter ESH 3-Z2.

They are recommended to protect the receiver's internal attenuator from excessive AC supply interference when working with the Artificial Mains Network.

Specifications

	Black Co. B. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co
Frequency range Equivalent circuit (to VDE 0876) Error limits (to VDE 0876) Continuous-rated output current Max. instantaneous output current Max. AC supply frequency Cooling	(50 μH +5 Ω) shunted by 50 Ω ±20% 4×25 A 4×50 A 53 Hz
Connectors AC supply inputs 4×02 A Blower connector AC supply outputs for test item 2×16 A 4×32 A RF output Remote control input Artificial hand	male European standard Iemale with earthing contact Cekon Iemale BNC Iemale 50-way Amphenot temale
General data	
Rated temperature range Storage temperature range AC supply (blower) Cverall dimensions (W×H×D) Weight	, -25 to +70°C , 100/120/220/240 V, 20 VA , 492 mm×294 mm×603 mm
Order designation	➤ Artificial Mains Network ESH 2-Z5 338.5219.53
Accessories supplied Power cord, RF connecting cable, Amphenol male connector (50-cont Cekon male connector, earthing-co	
Recommended extras Attenuator ESH 2Z11	Description of the second second

ESH 2-Z4 HFU-Z

Tripod HFU-Z

20 dB 10 W

is used for supporting the Loop Antennas HFH 2-Z2 and -Z3 (page 296).

Order designation ► Tripod HFU-Z 110.1114.02

Other accessories (continued)

Roof-mounting Kit HFH 2-Z5

The Roof-mounting Kit is used for fixing the Loop Antenna HFH 2-Z2 on the roof of a vehicle, where it is permanently mounted. The antenna can be rotated from inside the vehicle. A scale in degree divisions permits reproducible settings. The opening in the vehicle roof must have a diameter of 72 mm, the maximum roof thickness is 20 mm. Rubber rings are used for sealing. The loop antenna is inserted from above. The RF and coding sockets are accessible from inside the vehicle. When the loop antenna is dismounted, the roof opening can be covered up by a cap.

Specifications see illustration 2.2 kg Order designation

19" Adapter ESH 2-Z6

permits the bench model of the ESH 2 to be converted to a 19" rackmount, four dimensional units in height.

CONTRACTOR OF THE CONTRACTOR O	
The state of the property of the state of th	125.15A
	16 5 14
	200000-
Cirror designation to the contract of the cont	
Order designation ▶ 19" Adapter ESH 2-Z6	2002
	2000000
220 1810 00	
338.4312.02	
	C 6 C 5 A

Service Kit ESH 2-Z7

permits plug-in circuit boards to be operated outside the instrument when doing repair work. It comprises a 48-core flexible adapter cable and 14 coaxial connecting cables.

Order designation Service Kit ESH 2:27 338.4112.02				
338.4112.02				
338.4112.02				
338.4112.02				
338411212				

ESH 3-Z1

Connecting Cable ESH 3-Z1

This cable is used for connecting the ESH 3 recorder output to the XYT Recorder ZSKT.

Order designation		nnecting C	
		9.6011.02	