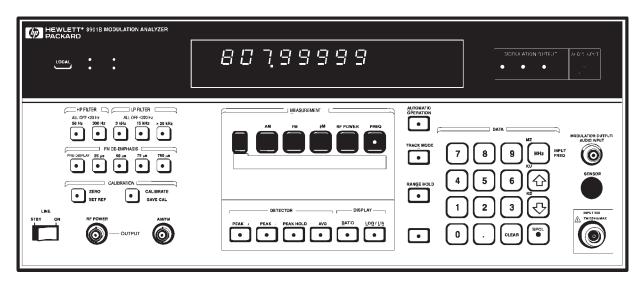


HP 8901B Modulation Analyzer


150 kHz - 1300 MHz

HP 11722A Sensor Module

100 kHz - 2600 MHz

Technical Specifications

Four Instruments In One

• RF Power: ±0.02 dB instrumentation accuracy

• RF Frequency: 10 Hz resolution

• AM and FM: 1% accuracy

The HP 8901B Modulation Analyzer combines four precise measurement functions into one fully automatic, HP-IB programmable instrument. It includes a power meter, modulation analyzer, frequency counter, and audio analyzer. For precise signal analysis, the HP 8901B Modulation Analyzer provides the performance you need, the features you want, and the reliability and serviceability you expect.

RF Power delivers the accuracy and resolution of a high performance power meter. The HP 8901B with the HP 11722A Sensor Module measures power from +30 dBm to –20 dBm at frequencies from 100 kHz to 2.6 GHz. The HP 8901B accepts all HP 8480 series power sensors for extended measurement capability.

• Audio Characterization AC Volts: ±4% accuracy

Frequency: 6 digits of resolution

Distortion: ±1 dB accuracy

AM and FM measurements offer 1% accuracy (3% accuracy for ϕM) and fast one-key operation. The HP 8901B has extremely low internal noise, and very low AM/ ϕM and $\phi M/AM$ conversion, for accurately measuring residual and incidental AM, FM and ϕM on a wide range of simple and complex modulated signals.

RF Frequency of complex modulated signals can be difficult to measure, but not with the HP 8901B. Automatically tuning to the largest input signal or to any user specified frequency, the HP 8901B counts with 10 Hz resolution.

Audio distortion, frequency and level measurements provide comprehensive characterization of the modulation signal.

HP 8901B Specifications

RF Power

The HP 8901B Modulation Analyzer, with HP 11722A Sensor Module, performs RF Power Measurements from– 20 dBm (10 μW) to +30 dBm (1W) at frequencies from 100 kHz to 2.6 GHz. The HP 8901B can be used with any of the HP 8480 series power sensors (HP 8481A/1B/1H/2A/ 2B/2H/3A/4A/5A) to make power measurements from –70 dBm (10 pW) to +44 dBm (25W) at frequencies from 100 kHz to 26.5 GHz. The HP 8480 series sensors also work with the HP 435A and HP 436A Power Meters. Unless otherwise specified, the specifications shown below refer to the HP 8901B only. A detailed explanation of how the uncertainty specifications provided below affect the absolute power measurement accuracy of the HP 8901B is provided in Application Note 64-1.

RF POWER RESOLUTION1:

0.1% of full scale in watts or volts mode. 0.01 dB in dBm or dB $_{\rm relative}$ mode.

LINEARITY (includes sensor nonlinearity):

RF range linearity ± RF range-to-range change error.

RF RANGE LINEARITY (using Recorder Output)2:

 ± 0.02 dB, RF ranges 2-5. ± 0.03 dB, RF range 1. Using front-panel display add ± 1 count of least-significant digit.

RF RANGE-TO-RANGE CHANGE ERROR:

±0.02 dB/RF Range Change from reference range.

INPUT SWR: <1.15, using HP 11722A Sensor Module.

ZERO SET (DIGITAL SETTABILITY OF ZERO]:

±0.07% of full scale of lowest range. Decrease by a factor of 10 for each higher range.

Supplemental Characteristics:

ZERO DRIFT OF METER:

±0.03% of full scale/^OC of lowest range.

NOISE (at constant temperature, peak change over any one-minute interval for the HP 11722A Sensor Module and HP 8481A/1B/1H/2A/2B/2H/3A/5A Sensors):

0.4% of full scale on range 1 (lowest range).
0.13% of full scale on range 2
0.013% of full scale on range 3.
0.0013% of full scale on range 4.
0.00013% of full scale on range 5.
For HP 8484A Sensor multiply noise by five on all ranges.

1 The HP 8901B fundamental RF Power measurement units are watts. Further internal processing is done on this number to display all other units.

ZERO DRIFT OF SENSORS (1 HOUR, AT CONSTANT TEMPERATURE AFTER 24-HOUR WARM-UP):

±0.1% of full scale of lowest range for HP 11722A Sensor Module and HP 8481A/1B/1H/2A/2B/2H/3A/ 5A sensors.

±2.0% of full scale of lowest range for HP 8484A sensor.

Decrease by a factor of 10 for each higher range.

RF POWER RANGES OF 8901B MODULATION ANALYZER WITH HP 11722A SENSOR MODULE:

- 20 dBm to - 10 dBm (10 µW to 100 µW), range 1. - 10 dBm to +0 dBm (100 µW to 1 mW), range 2. +0 dBm to +10 dBm (1 mW to 10 mW), range 3. +10 dBm to +20 dBm (10 mW to 100 mW), range 4. +20 dBm to +30 dBm (100 mW to 1W), range 5.

RESPONSE TIME (0 to 99% OF READING):

<10 seconds, range 1. <1 second, range 2. <100 milliseconds, ranges 3-5

DISPLAYED UNITS:

watts, dBm, dB $_{relative}$, $\%_{relative}$, volts, mV, µV, dB V, dB mV, dB µV.

INTERNAL NON-VOLATILE CAL-FACTOR TABLES (user-modifiable using special functions):
MAXIMUM NUMBER OF CAL
FACTOR/FREQUENCY ENTRIES:

Table #1 (Primary): 16 pairs plus Reference Cal Factor. Table #2 (Frequency Offset): 22 pairs plus

Table #2 (Frequency Offset): 22 pairs plus Reference Cal Factor.

MAXIMUM ALLOWED FREQUENCY ENTRY: 42 GHz.

FREQUENCY ENTRY RESOLUTION: 50 kHz.

CAL FACTOR RANGE: 40 to 120%.

CAI FACTOR RESOLUTION: 0.1%.

Power Reference

POWER OUTPUT:

1.00 mW. Factory set to $\pm 0.7\%,$ traceable to the U.S. National Bureau of Standards.

ACCURACY: $\pm 1.2\%$ worst case ($\pm 0.9\%$ rss) for one year (0^{O} C to 55^{O} C).

Supplemental Characteristics:

FREQUENCY: 50 MHz nominal.

SWR: 1.05 nominal.

FRONT PANEL CONNECTOR: Type-N female

All parameters describe performance in automatic operation or properly set manual conditions. **Specifications** describes the instrument's warranted performance.

Supplement Characteristics (shown in italics) are intended to provide information useful in applying the instrument by giving typical, but non-warranted, performance parameters.

² When using HP 8484A sensor the noise specification may mask the linearity specification and become the predominant error. When operating on the top RF power range, add the Power Sensor Linearity percentages found in the power sensor specifications.

Amplitude Modulation

RATES:

20 Hz to 10 kHz, 150 kHz $\leq f_C < 10$ MHz. 20 Hz to 100 kHz, 10 MHz $\leq f_C \leq 1300$ MHz.

DEPTH: to **99**%

ACCURACY 3,4,5:

AM Accuracy	Frequency Range	Rates	Depths
±2% of reading ±1 digit	150 kHz - 10 MHz	50 Hz - 10 kHz	5% - 99%
±3% of reading ±1 digit	150 kHz - 10 MHz	20 Hz - 10 kHz	to 99%
±1% of reading ±1 digit	10 MHz - 1300 MHz	50 Hz - 50 kHz	5% - 99%
±3% of reading ±1 digit	10 MHz - 1300 MHz	20 Hz - 100 kHz	to 99%

For rms detector add $\pm 3\%$ of reading.

FLATNESS 6,7:

AM Accuracy	Frequency Range	Rates	Depths
±0.3% of reading ±1 digit	10 MHz - 1300 MHz	90 Hz - 10 kHz	20% - 80%

DEMODULATED OUTPUT DISTORTION:

<0.3% THD for ≤50% depth. <0.6% THD for ≤95% depth.

FM REJECTION (50 Hz TO 3 kHz BW)4:

FM Rejection	Frequency Range	Rates	Deviations
< 0.2% AM	250 kHz - 10 MHz	400 Hz or 1 kHz	< 5 kHz _{peak}
< 0.2% AM	10 MHz - 1300 MHz	400 Hz or 1 kHz	< 50 kHz _{peak}

RESIDUAL AM (50 Hz to 3 kHz BW): $<0.01\%_{\rm rms}$

Supplemental Characteristics:

DETECTORS: +peak, -peak, ±peak/2, peak hold, average (rms sinewave calibrated), rms.

MAXIMUM DEPTH, RESOLUTION, AND MAXIMUM DEMODULATED OUTPUT SENSITIVITY ACROSS AN OPEN CIRCUIT (600 Ω OUTPUT IMPEDANCE)⁷:

Maximum Resolution	Maximum Demodulated Output Sensitivity	Depths
0.1%	O.01V / percent	$AM_{peak} \ge 40.0\%$
0.01%	O.1V / percent	AM _{peak} <40.0%
0.001% (rms detector only)	O.1V / percent	AM _{rms} <3.0%

3 But not to exceed: 50 Hz to 40 kHz rates for stated accuracy with rms detector.

Frequency Modulation

RATES8:

 $20~\rm{Hz}$ to $10~\rm{kHz},\,150~\rm{kHz} \le f_{\rm C} < 10~\rm{MHz}.$ $20~\rm{Hz}$ to $200~\rm{kHz},\,10~\rm{MHz} \le f_{\rm C} \le 1300~\rm{MHz}.$

DEVIATIONS:

40 kHz $_{\rm peak}^{\rm peak}$ maximum, 150 kHz \leq $f_{\rm C}$ < 10 MHz. 400 kHz $_{\rm peak}^{\rm peak}$ maximum, 10 MHz \leq $f_{\rm C}^{\rm }$ \leq 1300 MHz.

ACCURACY 3,4,8:

FM Accuracy	Frequency Range	Rates	Deviations
±2% of reading ±1 digit	250 kHz - 10 MHz	20 Hz - 10 kHz	≤40 kHz _{peak}
±1% of reading ±1 digit	10 MHz - 1300 MHz	50 Hz - 100 kHz	≤400 kHz _{peak}
±5% of reading ±1 digit	10 MHz - 1300 MHz	20 Hz - 200 kHz	≤400 kHz _{peak}

For rms detector add ±3% of reading.

DEMODULATED OUTPUT DISTORTION 8,9:

THD	Frequency Range	Rates	Deviations
< 0.1%	400 kHz - 10 MHz	20 Hz - 10 kHz	<10 kHz
< 0.1%	10 MHz - 1300 MHz	20 Hz - 100 kHz	<100 kHz

AM REJECTION (50 Hz TO 3 kHz BW)⁴:

AM Rejection	Frequency Range	Rates	Depths
< 20 Hz peak deviation	150 kHz - 1300 MHz	400 Hz or 1 kHz	≤50%

RESIDUAL FM (50 Hz to 3 kHz BW):

 ${<}8~{\rm Hz_{rms}}$ at 1300 MHz, decreasing linearly with frequency to ${<}1~{\rm Hz_{rms}}$ for 100 MHz and below.

Supplemental Characteristics

MAXIMUM FM DEVIATION, RESOLUTION, AND MAXIMUM DEMODULATED OUTPUT SENSITIVITY ACROSS AN OPEN CIRCUIT (600Ω OUTPUT IMPEDANCE)⁷:

Maximum Resolution	Maximum Demodulated Output Sensitivity	Deviations
100 Hz	0.01 mV/Hz	$\Delta F_{peak} \ge 40 \text{ kHz}$
10 Hz	O.1 mV/Hz	$4.0 \text{ kHz} \leq \\ \Delta F_{\text{peak}} < 40 \text{ kHz}$
1 Hz	1.0 mV/Hz	$\Delta F_{peak} < 4 \text{ kHz}$
0.1 Hz (rms detector only)	1.0 mV/ Hz	$\Delta F_{rms} < 0.3 \text{ kHz}$

Resolution is increased one digit with 750 μs de-emphasis and pre-display on.

The demodulated output signal present at the Modulation Out/Audio In connector is increased in amplitude by a factor of 10 with 750 µs de-emphasis.

⁴ Peak residuals must be accounted for in peak readings. 5 For peak measurements only: AM accuracy may be affected by distortion generated by the Analyzer. In the worst case this distortion can decrease accuracy by 0.1% of reading for each 0.1% of distortion.

⁶ Flatness is the variation in indicated AM depth for constant depth on input signal.

⁷ For optimum flatness, cables should be terminated with their characteristic impedance.

⁸ But not to exceed: 20 kHz rates and 40 kHz pea-deviations with 750 µs de-emphasis filter

⁹ With 750 µs de-emphasis and pre-display "off," distortion is not specified for modulation outputs >4V peak. This condition can occur near maximum deviation for a measurement range, at rates <2 kHz.

DEMODULATED OUTPUT DISTORTION:

THD	Frequency Range	Rates	Deviations
< 0.3%	150 kHz - 400 kHz	20 Hz - 10 kHz	<10 kHz

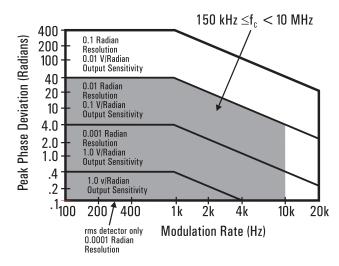
DETECTORS: +peak, - peak, ±peak/2, peak hold, average (rms sinewave calibrated), rms.

STEREO SEPARATION (50 Hz to 15 kHz): >47 dB.

Phase Modulation

RATES:

200 Hz to 10 kHz, 150 kHz \leq f $_{\rm c}$ < 10 MHz. 200 Hz to 20 kHz, 10 MHz \leq f $_{\rm c}$ \leq 1300 MHz.


ACCURACY4:

 $\pm 4\%$ of reading ± 1 digit, 150 kHz \leq f $_{c} < 10$ MHz. $\pm 3\%$ of reading ± 1 digit, 10 MHz \leq f $_{c} \leq 1300$ MHz For rms detector add $\pm 3\%$ of reading.

DEMODULATED OUTPUT DISTORTION: <0.1% THD.

AM REJECTION (FOR 50% AM AT 1 kHz RATES)⁴: <0.03 radians peak (50 Hz to 3 kHz BW).

MAXIMUM DEVIATION, RESOLUTION, AND MAXIMUM DEMODULATED OUTPUT SENSITIVITY ACROSS AN OPEN CIRCUIT (600Ω OUTPUT IMPEDANCE)⁷:

Supplemental Characteristics:

MODULATION RATES: usable from 20 Hz to 100 kHz with degraded performance.

DETECTORS: +peak, - peak, ±peak/2, peak hold, average (rms sinewave calibrated), rms.

Modulation Reference

AM CALIBRATOR DEPTH AND ACCURACY:

33.33% depth nominal, internally calibrated to an accuracy of $\pm 0.1\%$.

FM CALIBRATOR DEVIATION AND ACCURACY:

34 kHz peak deviation nominal, internally calibrated to an accuracy of $\pm 0.1\%$.

Supplemental Characteristics:

CARRIER FREQUENCY: 10.1 MHz.

MODULATION RATE: 10 kHz.

OUTPUT LEVEL: - 25 dBm.

Frequency Counter

RANGE: 150 kHz to 1300 MHz.

MAXIMUM RESOLUTION: 10 Hz.

DEMODULATED OUTPUT DISTORTION: <0.1% THD.

ACCURACY: ±3 counts of least-significant digit ± Reference accuracy.

Supplemental Characteristics:

MODES: Frequency and Frequency Error [displays the difference between the frequency entered via the keyboard and the actual RF input frequency).

SENSITIVITY IN MANUAL TUNING MODE:

0.22 mV $_{rms}$ (- 60 dBm). (Approximate frequency must be entered from keyboard.)

Internal Reference

FREQUENCY: 10 MHz.

AGING RATE:

<1 X 10⁻⁶/month. <1 X 10⁻⁹/day (Option 002)¹⁰.

Supplemental Characteristics:

INTERNAL REFERENCE ACCURACY:

Overall accuracy is a function of time base calibration \pm aging rate \pm temperature effects \pm line voltage effects \pm short-term stability.

	Standard	Option 002
Aging Rate	< 1 x 10 ⁻⁶ /mo	< 1 x 10 ⁻⁹ /day
Temperature Effects	<2x 10 ⁻⁷ /C ⁰	$< 2x 1-10^{-10}/C^0$
Line Voltage Effects (+ 5%, -10% Line Voltage Change)	< 1 x 10-6	< 6x 10 ⁻¹⁰
Short Term Stability	-	< 1 x 10 ⁻⁹ for 1 s average

Audio Frequency Counter

FREQUENCY RANGE:

20 Hz to 250 kHz. (Usable to 600 kHz.)

MAXIMUM EXTERNAL INPUT VOLTAGE: $3V_{rms}$

Accuracy (For Demodulated Signals)¹¹:

Accuracy	Frequency	Modulation (Peak)
±3 counts of least significant digit ±Internal Reference Accuracy	>1 kHz	AM ≥10% FM ≥1.0 kHz фM ≥1.5 radians
±0.02 Hz ±Internal Reference Accuracy	≤1 kHz	AM ≥10% FM ≥1.0 kHz
±0.2 Hz ±Internal Reference Accuracy (3 kHz low-pass filter inserted)	≤3 kHz	$\begin{array}{l} 1.5\% \leq AM < 10\% \\ 0.15 \text{ kHz} \leq FM \\ < 1.0 \text{ kHz} \\ 0.15 \text{ radian} \leq \phi M \\ < 1.5 \text{ radians} \end{array}$

Accuracy (For External Signals)11:

Accuracy	Frequency	Level
±3 counts of least-significant digit ±Internal Reference	> 1 kHz	≥100 mV _{rms}
±0.02 Hz ±Internal Reference Accuracy	≤1 kHz	≥100 mV _{rms}

Supplemental Characteristics:

DISPLAYED RESOLUTION: 6 digits.

MEASUREMENT RATE: 2 reading/s.

COUNTING TECHNIQUE:

Reciprocal with internal 10 MHz time base.

AUDIO INPUT IMPEDANCE: $100 k\Omega nominal$.

Audio Distortion

FUNDAMENTAL FREQUENCIES:

 $400 \text{ Hz} \pm 5\%$ and 1 kHz $\pm 5\%$.

MAXIMUM EXTERNAL INPUT VOLTAGE: 3V.

DISPLAY RANGE:

0.01% to 100.0% (-80.00 dB to 0.00 dB).

DISPLAYED RESOLUTION: 0.01% or 0.01 dB.

ACCURACY: ±1 dB of reading.

SENSITIVITY:

Modulation: 0.15 kHz peak FM, 1.5% peak AM

or 0.6 radian peak φM.

External: 100 mV_{rms} .

RESIDUAL NOISE AND DISTORTION¹²:

0.3% (-50 dB), temperature <40 0 C.

Supplemental Characteristics:

MEASUREMENT 3 dB BANDWIDTH: 20 Hz to 50 kHz.

DETECTION: True rms.

MEASUREMENT RATE: 1 reading/s.

AUDIO INPUT IMPEDANCE: $100 \, k\Omega \, nominal.$.

Audio RMS Level

FREQUENCY RANGE: 50 Hz to 40 kHz.

VOLTAGE RANGE: 100 mV to 3V.

ACCURACY: $\pm 4.0\%$ of reading.

Supplemental Characteristics:

FULL RANGE DISPLAY: .3000V, 4.000V.

AC CONVERTER: true-rms responding for signals with crest factor of ≤ 3 .

MEASUREMENT RATE: 2 readings/s.

AUDIO INPUT IMPEDANCE: $100 k\Omega$ nominal.

Audio Filters

DE-EMPHASIS FILTERS: 25 μ s, 50 μ s, 75 μ s, and 750 μ s. De-emphasis filters are single-pole, low-pass filters with 3 dB frequencies of: 6366 Hz for 25 μ s, 3183 Hz for 50 μ s, 2122 Hz for 75 μ s, and 212 Hz for 750 μ s.

50 Hz HIGH-PASS FILTER (2 POLE):

Flatness: <1% at rates ≥200 Hz.

300 Hz HIGH-PASS FILTER (2 POLE):

Flatness: <1% at rates ≥1 kHz.

3 kHz LOW-PASS FILTER (5 POLE):

Flatness: <1% at rates ≤1 kHz.

15 kHz LOW-PASS FILTER (5 POLE):

Flatness: <1% at rates ≤ 10 kHz.

>20 kHz LOW-PASS FILTER (9 POLE BESSEL)¹³:

Flatness: <1% at rates ≤10 kHz.

Supplemental Characteristics:

DE-EMPHASIS FILTER TIME CONSTANT ACCURACY: ±3%

HIGH PASS AND LOW PASS FILTER: 3 dB

FREQUENCY ACCURACY: ±3%.

>20 kHz LOW PASS FILTER:

3 dB Cutoff Frequency: 100 kHz nominal,

OVERSHOOT ON SQUARE WAVE MODULATION¹³: <1%

¹¹ With the low-pass and high-pass audio filters used to stabilize frequency readings.

¹² For demodulated signals, the residual noise generated by the HP 8901B must be accounted for in distortion measurements. (that is residual AM, FM or \$\phi\$M.)

 $^{13\ \ \,} The>20\,kHz\ low-pass\ filter\ is\ intended\ for\ minimum\ overshoot\ with\ squarewave\ modulation.$

RF Input

FREQUENCY RANGE: 150 kHz to 1300 MHz

OPERATING LEVEL:

Minimum Operating Level	Maximum Operating Level	Frequency Range
12 mV _{rms} (–25 dBm)	7 Vrms (1 Wpeak) Source SWR < 4	150 kHz - 650 MHz
22 mV _{rms} (–20 dBm)	7 Vrms (1 Wpeak) Source SWR < 4	650 MHz - 1300 MHz

Supplemental Characteristics:

TUNING:

Normal Mode: Automatic and Manual

frequency entry.

Track Mode: Automatic and Manual frequency

entry, $f_c \ge 10 \text{ MHz}$.

Acquisition Time (Automatic Operation): ~1.5s

INPUT IMPEDANCE: 50Ω nominal.

MAXIMUM SAFE DC INPUT LEVEL: 5V.

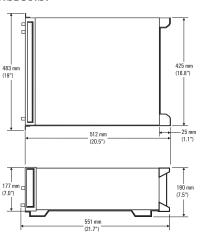
General Specifications

TEMPERATURE: Operating: 0 $^{\rm O}{\rm C}$ to 55 $^{\rm O}{\rm C}$. Storage: – 55 $^{\rm O}{\rm C}$ to 75 $^{\rm O}{\rm C}$.

REMOTE OPERATION: HP-IB; all functions except the line switch are remotely controllable.

HP-IB COMPATIBILITY: (Defined in IEEE 488-1978) SH1, AH1, T5, TE∅, L3, LE∅, SR1, RL1, PP∅, DC1, DT1, C∅, E1

EMI: Conducted and radiated interference is within the requirements of VDE 0871 (Level B), and CISPR publication 11.


POWER: 200 VA maximum; 100, 120, 220, or 240V (+5%, -10%); 48-66 Hz.

WEIGHT: Net 23.4 kg. (51.5 lb.); Shipping 31.1 kg. (68.5 lb.).

HP SYSTEM II MODULE SIZE: 7 H X 1 MW X 20 D.

HP SYSTEM II MODULE SIZE: 7 H X 1 MW X 20 D

DIMENSIONS:

HP 11722A Sensor Module

FREQUENCY RANGE: 100 kHz to 2.6 GHz.

POWER RANGE: $+30 \text{ dBm} (1 \text{ watt}) \text{ to } -20 \text{ dBm} (10 \text{ }\mu\text{W}).$

INPUT SWR (CONNECTED TO AN HP 8901B):

<1.15, for RF Power Measurements.

POWER SENSOR LINEARITY:

+2%, **-4%**; +30 dBm to +20 dBm. Negligible deviation, levels <+20 dBm.

CALIBRATION FACTORS:

Each HP 11722A Sensor Module is individually calibrated. The calibration factors are printed on the HP 11722A Sensor Module for easy reference.

CAL FACTOR UNCERTAINTY:

Frequency	RSS Uncertainty	Worst Case Uncertainty
0.1 MHz 0.3 MHz 1.0 MHz 3.0 MHz 10.0 MHz 30.0 MHz 50.0 MHz	0.7 % 0.7% 0.8% 0.8% 0.9% 0.9%	1.6% 1. 6% 1.7% 1.7% 2.0% 2.0% 0.0% (ref)
100.0 MHz 300.0 MHz 1000.0 MHz 2600.0 MHz	1.1% 1.1% 1.1% 1.2%	2.2% 2.2% 2.2% 2.3%

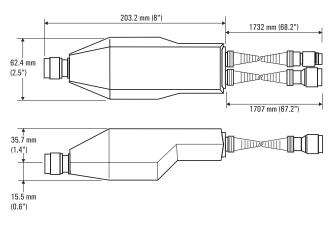
Supplemental Characteristics:

MAXIMUM PEAK POWER:

 $100W_{peak}$ or 300W μs per pulse.

INPUT IMPEDANCE: 50Ω nominal.

INPUT CONNECTOR: *Type* N male.


SWITCH LIFE: >1,000,000 switchings.

SWITCH Isolation: >90 dB.

WEIGHT:

Net 0.8 kg. (1.75 lb.); Shipping 1.2 kg. (2.6 lb.); Gross without manual 1050g.

DIMENSIONS:

HP 8901B Rear Panel Inputs/Outputs

Supplemental Characteristics:

FM OUTPUT:

10 $k\Omega$ impedance, - 9V to 6V into an open circuit: \sim 6V/MHz, dc coupled, 16 kHz bandwidth (one pole).

AM OUTPUT:

10 $k\Omega$ impedance, - 4V to OV into an open circuit, ~8 mV/%, dc coupled, 16 kHz bandwidth(one pole).

RECORDER OUTPUT:

DC voltage proportional to the measured result, $1~k\Omega$ impedance, OV to 4V for each resolution range, into an open circuit.

IF OUTPUT:

 50Ω impedance, 150 kHz to 2.5 MHz, - 27 dBm to - 3 dBm.

10 MHz REFERENCE OUTPUT:

 50Ω impedance, TTL levels (OV to >2.2V into an open circuit), available only with Option OO2 1X10⁻⁹/day internal reference, outputs internal reference only.

10 MHz REFERENCE INPUT¹⁴:

>500 Ω impedance, 0.5 $V_{peak\text{-}to\text{-}peak}$ minimum input level.

LO INPUT (Option 003): 50Ω impedance, ~1.27 MHz to 1301.5 MHz, 0 dBm.

RF SWITCH REMOTE CONTROL OUTPUT:

Provides output signals to remotely control either an HP 33311B Option 011 or an HP 8761A RF switch.

FREQUENCY OFFSET MODE REMOTE CONTROL OUTPUT:

TTL high output if in frequency offset mode (Special Function 27.1 or 27.3) with an external L.O. frequency >0, TTL low output for all other cases

14 External reference accuracy affects accuracy of all measurements.

Ordering Information

HP 8901B Modulation Analyzer

Option 001: Rear panel instead of front panel connections for input, modulation output, and calibrators

Option 002: 1X10⁻⁹/day internal reference oscillator

Option 003: Rear panel instead of front panel connections which allows use with an external local oscillator

Option 004: Operation from 48 Hz to 400 Hz power line (Temp. <40^oC)

Option 021: Add HP 11722A Sensor Module

Option 907: Front panel handle kit

Option 908: Rack mounting flange kit

Option 909: Front panel handle plus rack mounting flange kit

Option 910: Extra manuals

HP 11722A Sensor Module

Option 910: Extra manual

Data subject to change © Hewlett-Packard Company 1997 Printed in U.S.A. 5/98 5966-4569E